Each virion contains one molecule of linear, single-stranded, negative-sense RNA, 18,959 to 18,961 nucleotides in length. The 3′ terminus is not polyadenylated and the 5′ end is not capped. This viral genome codes for seven structural proteins and one non-structural protein. The gene order is 3′ – leader – NP – VP35 – VP40 – GP/sGP – VP30 – VP24 – L – trailer – 5′; with the leader and trailer being non-transcribed regions, which carry important signals to control transcription, replication, and packaging of the viral genomes into new virions. Sections of the NP, VP35 and the L genes from filoviruses have been identified as endogenous in the genomes of several groups of small mammals.
It was found that 472 nucleotides from the 3' end and 731 nucleotides from the 5' end are sufficient for replication of a viral "minigenome", though not sufficient for infection. Virus sequencing from 78 patients with confirmed Ebola virus disease, representing more than 70% of cases diagnosed in Sierra Leone from late May to mid-June 2014, provided evidence that the 2014 outbreak was no longer being fed by new contacts with its natural reservoir. Using third-generation sequencing technology, investigators were able to sequence samples as quickly as 48 hours. Like other RNA viruses, Ebola virus mutates rapidly, both within a person during the progression of disease and in the reservoir among the local human population. The observed mutation rate of 2.0 x 10−3 substitutions per site per year is as fast as that of seasonal influenza.
Proteins encoded by There are two candidates for host cell entry proteins. The first is a cholesterol transporter protein, the host-encoded Niemann–Pick C1 (NPC1), which appears to be essential for entry of Ebola virions into the host cell and for its ultimate replication. In one study, mice with one copy of the NPC1 gene removed showed an 80 percent survival rate fifteen days after exposure to mouse-adapted Ebola virus, while only 10 percent of unmodified mice survived this long. In another study, small molecules were shown to inhibit Ebola virus infection by preventing viral envelope glycoprotein (GP) from binding to NPC1. Hence, NPC1 was shown to be critical to entry of this filovirus, because it mediates infection by binding directly to viral GP.
Being acellular, viruses such as Ebola do not replicate through any type of cell division; rather, they use a combination of host- and virally encoded enzymes, alongside host cell structures, to produce multiple copies of themselves. These then self-assemble into viral macromolecular structures in the host cell. The virus completes a set of steps when infecting each individual cell. The virus begins its attack by attaching to host receptors through the glycoprotein (GP) surface peplomer and is endocytosed into macropinosomes in the host cell. To penetrate the cell, the viral membrane fuses with vesicle membrane, and the nucleocapsid is released into the cytoplasm. Encapsidated, negative-sense genomic ssRNA is used as a template for the synthesis (3'–5') of polyadenylated, monocistronic mRNAs and, using the host cell's ribosomes, tRNA molecules, etc., the mRNA is translated into individual viral proteins.
These viral proteins are processed: a glycoprotein precursor (GP0) is cleaved to GP1 and GP2, which are then heavily glycosylated using cellular enzymes and substrates. These two molecules assemble, first into heterodimers, and then into trimers to give the surface peplomers. Secreted glycoprotein (sGP) precursor is cleaved to sGP and delta peptide, both of which are released from the cell. As viral protein levels rise, a switch occurs from translation to replication. Using the negative-sense genomic RNA as a template, a complementary +ssRNA is synthesized; this is then used as a template for the synthesis of new genomic (-)ssRNA, which is rapidly encapsidated. The newly formed nucleocapsids and envelope proteins associate at the host cell's plasma membrane; budding occurs, destroying the cell.
Zaire ebolavirus is one of the four ebolaviruses known to cause disease in humans. It has the highest case-fatality rate of these ebolaviruses, averaging 83 percent since the first outbreaks in 1976, although a fatality rate of up to 90 percent was recorded in one outbreak in the Republic of the Congo between December 2002 and April 2003. There have also been more outbreaks of Zaire ebolavirus than of any other ebolavirus. The first outbreak occurred on 26 August 1976 in Yambuku. The first recorded case was Mabalo Lokela, a 44‑year-old schoolteacher. The symptoms resembled malaria, and subsequent patients received quinine. Transmission has been attributed to reuse of unsterilized needles and close personal contact, body fluids and places where the person has touched. During the 1976 Ebola outbreak in Zaire, Ngoy Mushola travelled from Bumba to Yambuku, where he recorded the first clinical description of the disease in his daily log:
Since the first recorded clinical description of the disease during 1976 in Zaire, the recent Ebola outbreak that started in March 2014, in addition, reached epidemic proportions and has killed more than 8000 people as of January 2015. This outbreak was centered in West Africa, an area that had not previously been affected by the disease. The toll was particularly grave in three countries: Guinea, Liberia, and Sierra Leone. A few cases were also reported in countries outside of West Africa, all related to international travelers who were exposed in the most affected regions and later showed symptoms of Ebola fever after reaching their destinations.
The severity of the disease in humans varies widely, from rapid fatality to mild illness or even asymptomatic response. Studies of outbreaks in the late twentieth century failed to find a correlation between the disease severity and the genetic nature of the virus. Hence the variability in the severity of illness was suspected to correlate with genetic differences in the victims. This has been difficult to study in animal models that respond to the virus with hemorrhagic fever in a similar manner as humans, because typical mouse models do not so respond, and the required large numbers of appropriate test subjects are not easily available. In late October 2014, a publication reported a study of the response to a mouse-adapted strain of Zaire ebolavirus presented by a genetically diverse population of mice that was bred to have a range of responses to the virus that includes fatality from hemorrhagic fever.
In 1998, the virus name was changed to "Zaire Ebola virus" and in 2002 to species Zaire ebolavirus. However, most scientific articles continued to refer to "Ebola virus" or used the terms "Ebola virus" and "Zaire ebolavirus" in parallel. Consequently, in 2010, a group of researchers recommended that the name "Ebola virus" be adopted for a subclassification within the species Zaire ebolavirus, with the corresponding abbreviation EBOV. Previous abbreviations for the virus were EBOV-Z (for "Ebola virus Zaire") and ZEBOV (for "Zaire Ebola virus" or "Zaire ebolavirus"). In 2011, the ICTV explicitly rejected a proposal (2010.010bV) to recognize this name, as ICTV does not designate names for subtypes, variants, strains, or other subspecies level groupings. At present, ICTV does not officially recognize "Ebola virus" as a taxonomic rank, but rather continues to use and recommend only the species designation Zaire ebolavirus. The prototype Ebola virus, variant Mayinga (EBOV/May), was named for Mayinga N'Seka, a nurse who died during the 1976 Zaire outbreak.
"Genus: Orthoebolavirus | ICTV". ictv.global. Retrieved 18 January 2025. https://ictv.global/report/chapter/filoviridae/filoviridae/orthoebolavirus
Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, et al. (2010). "Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations". Archives of Virology. 155 (12): 2083–2103. doi:10.1007/s00705-010-0814-x. PMC 3074192. PMID 21046175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074192
Na, Woonsung; Park, Nanuri; Yeom, Minju; Song, Daesub (4 December 2016). "Ebola outbreak in Western Africa 2014: what is going on with Ebola virus?". Clinical and Experimental Vaccine Research. 4 (1): 17–22. doi:10.7774/cevr.2015.4.1.17. ISSN 2287-3651. PMC 4313106. PMID 25648530. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313106
Ebola virus disease (Report). World Health Organization. Retrieved 6 June 2019. https://www.who.int/en/news-room/fact-sheets/detail/ebola-virus-disease
"Ebola virus disease outbreak". World Health Organization. Archived from the original on 23 March 2021. Retrieved 4 December 2016. https://www.who.int/csr/disease/ebola/en/
Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, et al. (2010). "Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations". Archives of Virology. 155 (12): 2083–2103. doi:10.1007/s00705-010-0814-x. PMC 3074192. PMID 21046175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074192
Pattyn S, Jacob W, van der Groen G, Piot P, Courteille G (1977). "Isolation of Marburg-like virus from a case of haemorrhagic fever in Zaire". Lancet. 309 (8011): 573–574. doi:10.1016/s0140-6736(77)92002-5. PMID 65663. S2CID 33060636. /wiki/Doi_(identifier)
Bowen ET, Lloyd G, Harris WJ, Platt GS, Baskerville A, Vella EE (1977). "Viral haemorrhagic fever in southern Sudan and northern Zaire. Preliminary studies on the aetiological agent". Lancet. 309 (8011): 571–573. doi:10.1016/s0140-6736(77)92001-3. PMID 65662. S2CID 3092094. /wiki/Doi_(identifier)
Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, et al. (2010). "Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations". Archives of Virology. 155 (12): 2083–2103. doi:10.1007/s00705-010-0814-x. PMC 3074192. PMID 21046175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074192
WHO. "Ebola virus disease". Archived from the original on 14 December 2014. Retrieved 5 October 2020. https://www.who.int/mediacentre/factsheets/fs103/en/
Quammen, David (30 December 2014). "Insect-Eating Bat May Be Origin of Ebola Outbreak, New Study Suggests". news.nationalgeographic.com. Washington, DC: National Geographic Society. Archived from the original on 31 December 2014. Retrieved 30 December 2014. /wiki/David_Quammen
Angier, Natalie (27 October 2014). "Killers in a Cell but on the Loose – Ebola and the Vast Viral Universe". New York Times. Archived from the original on 12 November 2020. Retrieved 27 October 2014. https://www.nytimes.com/2014/10/28/science/ebola-and-the-vast-viral-universe.html
Nanbo, Asuka; Watanabe, Shinji; Halfmann, Peter; Kawaoka, Yoshihiro (4 February 2013). "The spatio-temporal distribution dynamics of Ebola virus proteins and RNA in infected cells". Scientific Reports. 3 (1): 1206. Bibcode:2013NatSR...3.1206N. doi:10.1038/srep01206. PMC 3563031. PMID 23383374. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563031
"Ebola virus disease Fact sheet N°103". World Health Organization. March 2014. Archived from the original on 14 December 2014. Retrieved 12 April 2014. https://www.who.int/mediacentre/factsheets/fs103/en/
Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, eds. (2005). Virus Taxonomy – Eighth Report of the International Committee on Taxonomy of Viruses. Oxford: Elsevier/Academic Press. p. 648. ISBN 978-0080575483. Archived from the original on 14 January 2023. Retrieved 7 February 2016. 978-0080575483
Klenk, H.-D.; Feldmann, H., eds. (2004). Ebola and Marburg Viruses – Molecular and Cellular Biology. Wymondham, Norfolk, UK: Horizon Bioscience. p. 28. ISBN 978-0-9545232-3-7. 978-0-9545232-3-7
Feldmann, H. K. (1993). "Molecular biology and evolution of filoviruses". Archives of Virology. Supplementum. 7: 81–100. doi:10.1007/978-3-7091-9300-6_8. PMID 8219816. /wiki/Doi_(identifier)
Lee, Jeffrey E; Saphire, Erica Ollmann (2009). "Ebolavirus glycoprotein structure and mechanism of entry". Future Virology. 4 (6): 621–635. doi:10.2217/fvl.09.56. ISSN 1746-0794. PMC 2829775. PMID 20198110. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829775
Falasca L, Agrati C, Petrosillo N, Di Caro A, Capobianchi MR, Ippolito G, Piacentini M (4 December 2016). "Molecular mechanisms of Ebola virus pathogenesis: focus on cell death". Cell Death and Differentiation. 22 (8): 1250–1259. doi:10.1038/cdd.2015.67. ISSN 1350-9047. PMC 4495366. PMID 26024394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495366
Swetha, Rayapadi G.; Ramaiah, Sudha; Anbarasu, Anand; Sekar, Kanagaraj (2016). "Ebolavirus Database: Gene and Protein Information Resource for Ebolaviruses". Advances in Bioinformatics. 2016: 1673284. doi:10.1155/2016/1673284. ISSN 1687-8027. PMC 4848411. PMID 27190508. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848411
Klenk, H.-D.; Feldmann, H., eds. (2004). Ebola and Marburg Viruses: Molecular and Cellular Biology. Horizon Bioscience. ISBN 978-1904933496.[page needed] 978-1904933496
Hillman, H. (1991). The Case for New Paradigms in Cell Biology and in Neurobiology. Edwin Mellen Press.
Klenk, H.-D.; Feldmann, H., eds. (2004). Ebola and Marburg Viruses: Molecular and Cellular Biology. Horizon Bioscience. ISBN 978-1904933496.[page needed] 978-1904933496
Zaire ebolavirus isolate H.sapiens-wt/GIN/2014/Makona-Kissidougou-C15, complete genome Archived 24 January 2018 at the Wayback Machine, GenBank https://www.ncbi.nlm.nih.gov/nuccore/674810549
Taylor D, Leach R, Bruenn J (2010). "Filoviruses are ancient and integrated into mammalian genomes". BMC Evolutionary Biology. 10 (1): 193. Bibcode:2010BMCEE..10..193T. doi:10.1186/1471-2148-10-193. PMC 2906475. PMID 20569424. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906475
Belyi, V. A.; Levine, A. J.; Skalka, A. M. (2010). Buchmeier, Michael J. (ed.). "Unexpected Inheritance: Multiple Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in Vertebrate Genomes". PLOS Pathogens. 6 (7): e1001030. doi:10.1371/journal.ppat.1001030. PMC 2912400. PMID 20686665. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912400
Taylor DJ, Ballinger MJ, Zhan JJ, Hanzly LE, Bruenn JA (2014). "Evidence that ebolaviruses and cuevaviruses have been diverging from marburgviruses since the Miocene". PeerJ. 2: e556. doi:10.7717/peerj.556. PMC 4157239. PMID 25237605. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157239
Klenk, H.-D.; Feldmann, H., eds. (2004). Ebola and Marburg Viruses: Molecular and Cellular Biology. Horizon Bioscience. ISBN 978-1904933496.[page needed] 978-1904933496
Richard Preston (27 October 2014). "The Ebola Wars". The New Yorker. New York: Condé Nast. Archived from the original on 25 January 2021. Retrieved 20 October 2014. https://www.newyorker.com/magazine/2014/10/27/ebola-wars
Gire, Stephen K.; et al. (2014). "Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak". Science. 345 (6202): 1369–1372. Bibcode:2014Sci...345.1369G. doi:10.1126/science.1259657. PMC 4431643. PMID 25214632. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431643
Check Hayden, Erika (5 May 2015). "Pint-sized DNA sequencer impresses first users". Nature. 521 (7550): 15–16. Bibcode:2015Natur.521...15C. doi:10.1038/521015a. ISSN 0028-0836. PMID 25951262. https://doi.org/10.1038%2F521015a
Richard Preston (27 October 2014). "The Ebola Wars". The New Yorker. New York: Condé Nast. Archived from the original on 25 January 2021. Retrieved 20 October 2014. https://www.newyorker.com/magazine/2014/10/27/ebola-wars
Gire, Stephen K.; et al. (2014). "Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak". Science. 345 (6202): 1369–1372. Bibcode:2014Sci...345.1369G. doi:10.1126/science.1259657. PMC 4431643. PMID 25214632. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431643
Jenkins GM, Rambaut A, Pybus OG, Holmes EC (2002). "Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis". Journal of Molecular Evolution. 54 (2): 156–165. Bibcode:2002JMolE..54..156J. doi:10.1007/s00239-001-0064-3. PMID 11821909. S2CID 20759532. /wiki/Bibcode_(identifier)
Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR (September 2011). "Ebola virus entry requires the cholesterol transporter Niemann-Pick C1". Nature. 477 (7364): 340–343. Bibcode:2011Natur.477..340C. doi:10.1038/nature10348. PMC 3175325. PMID 21866103.
Amanda Schaffer (16 January 2012). "Key Protein May Give Ebola Virus Its Opening". The New York Times. Archived from the original on 20 February 2022. Retrieved 26 February 2017.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175325
Côté M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D, Chandran K, Cunningham J (September 2011). "Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection". Nature. 477 (7364): 344–348. Bibcode:2011Natur.477..344C. doi:10.1038/nature10380. PMC 3230319. PMID 21866101.
Amanda Schaffer (16 January 2012). "Key Protein May Give Ebola Virus Its Opening". The New York Times. Archived from the original on 20 February 2022. Retrieved 26 February 2017.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230319
Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR (September 2011). "Ebola virus entry requires the cholesterol transporter Niemann-Pick C1". Nature. 477 (7364): 340–343. Bibcode:2011Natur.477..340C. doi:10.1038/nature10348. PMC 3175325. PMID 21866103.
Amanda Schaffer (16 January 2012). "Key Protein May Give Ebola Virus Its Opening". The New York Times. Archived from the original on 20 February 2022. Retrieved 26 February 2017.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175325
Côté M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D, Chandran K, Cunningham J (September 2011). "Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection". Nature. 477 (7364): 344–348. Bibcode:2011Natur.477..344C. doi:10.1038/nature10380. PMC 3230319. PMID 21866101.
Amanda Schaffer (16 January 2012). "Key Protein May Give Ebola Virus Its Opening". The New York Times. Archived from the original on 20 February 2022. Retrieved 26 February 2017.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230319
Flemming A (October 2011). "Achilles heel of Ebola viral entry". Nat Rev Drug Discov. 10 (10): 731. doi:10.1038/nrd3568. PMID 21959282. S2CID 26888076. https://doi.org/10.1038%2Fnrd3568
Côté M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D, Chandran K, Cunningham J (September 2011). "Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection". Nature. 477 (7364): 344–348. Bibcode:2011Natur.477..344C. doi:10.1038/nature10380. PMC 3230319. PMID 21866101.
Amanda Schaffer (16 January 2012). "Key Protein May Give Ebola Virus Its Opening". The New York Times. Archived from the original on 20 February 2022. Retrieved 26 February 2017.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230319
Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR (September 2011). "Ebola virus entry requires the cholesterol transporter Niemann-Pick C1". Nature. 477 (7364): 340–343. Bibcode:2011Natur.477..340C. doi:10.1038/nature10348. PMC 3175325. PMID 21866103.
Amanda Schaffer (16 January 2012). "Key Protein May Give Ebola Virus Its Opening". The New York Times. Archived from the original on 20 February 2022. Retrieved 26 February 2017.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175325
Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR (September 2011). "Ebola virus entry requires the cholesterol transporter Niemann-Pick C1". Nature. 477 (7364): 340–343. Bibcode:2011Natur.477..340C. doi:10.1038/nature10348. PMC 3175325. PMID 21866103.
Amanda Schaffer (16 January 2012). "Key Protein May Give Ebola Virus Its Opening". The New York Times. Archived from the original on 20 February 2022. Retrieved 26 February 2017.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175325
Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS, Krishnan A, Ndungo E, Sandesara RG, Carette JE, Kuehne AI, Ruthel G, Pfeffer SR, Dye JM, Whelan SP, Brummelkamp TR, Chandran K (March 2012). "Ebola virus entry requires the host-programmed recognition of an intracellular receptor". EMBO Journal. 31 (8): 1947–1960. doi:10.1038/emboj.2012.53. PMC 3343336. PMID 22395071. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343336
Kondratowicz AS, Lennemann NJ, Sinn PL, et al. (May 2011). "T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus". Proceedings of the National Academy of Sciences of the United States of America. 108 (20): 8426–8431. Bibcode:2011PNAS..108.8426K. doi:10.1073/pnas.1019030108. PMC 3100998. PMID 21536871. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100998
Biomarker Database. Ebola virus. Korea National Institute of Health. Archived from the original on 22 April 2008. Retrieved 31 May 2009. https://web.archive.org/web/20080422041525/http://biomarker.cdc.go.kr:8080/pathogen/pathogen_view_en.jsp?pclass=2&id=44
Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA (2010). Basler CF (ed.). "Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes". PLOS Pathogens. 6 (9): e1001110. doi:10.1371/journal.ppat.1001110. PMC 2940741. PMID 20862315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940741
Mühlberger, Elke (4 December 2016). "Filovirus replication and transcription". Future Virology. 2 (2): 205–215. doi:10.2217/17460794.2.2.205. ISSN 1746-0794. PMC 3787895. PMID 24093048. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787895
Feldmann, H.; Klenk, H.-D. (1996). "Filoviruses". Medical Microbiology. University of Texas Medical Branch at Galveston. ISBN 978-0963117212. Archived from the original on 9 September 2018. Retrieved 4 December 2016. 978-0963117212
Lai, Kang Yiu; Ng, Wing Yiu George; Cheng, Fan Fanny (28 November 2014). "Human Ebola virus infection in West Africa: a review of available therapeutic agents that target different steps of the life cycle of Ebola virus". Infectious Diseases of Poverty. 3 (1): 43. doi:10.1186/2049-9957-3-43. ISSN 2049-9957. PMC 4334593. PMID 25699183. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334593
Quammen, David (30 December 2014). "Insect-Eating Bat May Be Origin of Ebola Outbreak, New Study Suggests". news.nationalgeographic.com. Washington, DC: National Geographic Society. Archived from the original on 31 December 2014. Retrieved 30 December 2014. /wiki/David_Quammen
Feldmann H (May 2014). "Ebola – A Growing Threat?". N. Engl. J. Med. 371 (15): 1375–1378. doi:10.1056/NEJMp1405314. PMID 24805988. S2CID 4657264. https://doi.org/10.1056%2FNEJMp1405314
Feldmann H (May 2014). "Ebola – A Growing Threat?". N. Engl. J. Med. 371 (15): 1375–1378. doi:10.1056/NEJMp1405314. PMID 24805988. S2CID 4657264. https://doi.org/10.1056%2FNEJMp1405314
Ng, S.; Cowling, B. (2014). "Association between temperature, humidity and ebolavirus disease outbreaks in Africa, 1976 to 2014". Eurosurveillance. 19 (35): 20892. doi:10.2807/1560-7917.ES2014.19.35.20892. PMID 25210981. https://doi.org/10.2807%2F1560-7917.ES2014.19.35.20892
"Clinical care for survivors of Ebola virus disease" (PDF). World Health Organization. 2016. Archived (PDF) from the original on 31 August 2016. Retrieved 4 December 2016. http://apps.who.int/iris/bitstream/10665/204235/1/WHO_EVD_OHE_PED_16.1_eng.pdf?ua=1
Isaacson M, Sureau P, Courteille G, Pattyn, SR. "Clinical Aspects of Ebola Virus Disease at the Ngaliema Hospital, Kinshasa, Zaire, 1976". European Network for Diagnostics of "Imported" Viral Diseases (ENIVD). Archived from the original on 4 August 2014. Retrieved 24 June 2014. https://web.archive.org/web/20140804113441/http://www.itg.be/internet/ebola/ebola-12.htm
Bardi, Jason Socrates. "Death Called a River". The Scripps Research Institute. Archived from the original on 2 August 2014. Retrieved 9 October 2014. http://www.scripps.edu/newsandviews/e_20020114/ebola1.html
name: S. Reardan.; N Engl. J Med. (2014) " The first nine months of the epidemic and projection, Ebola virus disease in west Africa". archive of Ebola Response Team. 511(75.11):520
Gina Kolata (30 October 2014). "Genes Influence How Mice React to Ebola, Study Says in 'Significant Advance'". New York Times. Archived from the original on 9 March 2021. Retrieved 30 October 2014. https://www.nytimes.com/2014/10/31/health/genes-influence-ebola-infections-in-mice-study-suggests.html
Rasmussen, Angela L.; et al. (30 October 2014). "Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance". Science. 346 (6212): 987–991. Bibcode:2014Sci...346..987R. doi:10.1126/science.1259595. PMC 4241145. PMID 25359852. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241145
Henao-Restrepo, Ana Maria; et al. (22 December 2016). "Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!)". The Lancet. 389 (10068): 505–518. doi:10.1016/S0140-6736(16)32621-6. PMC 5364328. PMID 28017403. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364328
Berlinger, Joshua (22 December 2016). "Ebola vaccine gives 100% protection, study finds". CNN. Archived from the original on 27 December 2016. Retrieved 27 December 2016. http://www.cnn.com/2016/12/22/health/ebola-vaccine-study/index.html
"First FDA-approved vaccine for the prevention of Ebola virus disease, marking a critical milestone in public health preparedness and response". U.S. Food and Drug Administration (FDA). 19 December 2019. Archived from the original on 20 December 2019. Retrieved 19 December 2019. https://web.archive.org/web/20191220052152/https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health
Pattyn S, Jacob W, van der Groen G, Piot P, Courteille G (1977). "Isolation of Marburg-like virus from a case of haemorrhagic fever in Zaire". Lancet. 309 (8011): 573–574. doi:10.1016/s0140-6736(77)92002-5. PMID 65663. S2CID 33060636. /wiki/Doi_(identifier)
Bowen ET, Lloyd G, Harris WJ, Platt GS, Baskerville A, Vella EE (1977). "Viral haemorrhagic fever in southern Sudan and northern Zaire. Preliminary studies on the aetiological agent". Lancet. 309 (8011): 571–573. doi:10.1016/s0140-6736(77)92001-3. PMID 65662. S2CID 3092094. /wiki/Doi_(identifier)
Brown, Rob (18 July 2014). "The virus detective who discovered Ebola". BBC News. Archived from the original on 26 October 2021. Retrieved 21 June 2018. https://www.bbc.com/news/magazine-28262541
Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, et al. (2010). "Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations". Archives of Virology. 155 (12): 2083–2103. doi:10.1007/s00705-010-0814-x. PMC 3074192. PMID 21046175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074192
Pattyn S, Jacob W, van der Groen G, Piot P, Courteille G (1977). "Isolation of Marburg-like virus from a case of haemorrhagic fever in Zaire". Lancet. 309 (8011): 573–574. doi:10.1016/s0140-6736(77)92002-5. PMID 65663. S2CID 33060636. /wiki/Doi_(identifier)
Bowen ET, Lloyd G, Harris WJ, Platt GS, Baskerville A, Vella EE (1977). "Viral haemorrhagic fever in southern Sudan and northern Zaire. Preliminary studies on the aetiological agent". Lancet. 309 (8011): 571–573. doi:10.1016/s0140-6736(77)92001-3. PMID 65662. S2CID 3092094. /wiki/Doi_(identifier)
Johnson KM, Webb PA, Lange JV, Murphy FA (1977). "Isolation and partial characterisation of a new virus causing haemorrhagic fever in Zambia". Lancet. 309 (8011): 569–571. doi:10.1016/s0140-6736(77)92000-1. PMID 65661. S2CID 19368457. /wiki/Doi_(identifier)
Netesov SV, Feldmann H, Jahrling PB, Klenk HD, Sanchez A (2000). "Family Filoviridae". In van Regenmortel MH, Fauquet CM, Bishop DH, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (eds.). Virus Taxonomy – Seventh Report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press. pp. 539–548. ISBN 978-0123702005. 978-0123702005
Pringle, C. R. (1998). "Virus taxonomy – San Diego 1998". Archives of Virology. 143 (7): 1449–1459. doi:10.1007/s007050050389. PMID 9742051. S2CID 13229117. /wiki/Doi_(identifier)
Feldmann H, Geisbert TW, Jahrling PB, Klenk HD, Netesov SV, Peters CJ, Sanchez A, Swanepoel R, Volchkov VE (2005). "Family Filoviridae". In Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds.). Virus Taxonomy – Eighth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier/Academic Press. pp. 645–653. ISBN 978-0123702005. 978-0123702005
Mayo, M. A. (2002). "ICTV at the Paris ICV: results of the plenary session and the binomial ballot". Archives of Virology. 147 (11): 2254–2260. doi:10.1007/s007050200052. S2CID 43887711. https://doi.org/10.1007%2Fs007050200052
Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, et al. (2010). "Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations". Archives of Virology. 155 (12): 2083–2103. doi:10.1007/s00705-010-0814-x. PMC 3074192. PMID 21046175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074192
"Replace the species name Lake Victoria marburgvirus with Marburg marburgvirus in the genus Marburgvirus". Archived from the original on 5 March 2016. Retrieved 31 October 2014. https://web.archive.org/web/20160305175803/http://talk.ictvonline.org/files/ictv_official_taxonomy_updates_since_the_8th_report/m/vertebrate-official/4171.aspx
International Committee on Taxonomy of Viruses. "Virus Taxonomy: 2013 Release". Archived from the original on 10 July 2015. Retrieved 31 October 2014. http://ictvonline.org/virusTaxonomy.asp
Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, et al. (2010). "Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations". Archives of Virology. 155 (12): 2083–2103. doi:10.1007/s00705-010-0814-x. PMC 3074192. PMID 21046175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074192
Wahl-Jensen V, Kurz SK, Hazelton PR, Schnittler HJ, Stroher U, Burton DR, Feldmann H (2005). "Role of Ebola Virus Secreted Glycoproteins and Virus-Like Particles in Activation of Human Macrophages". Journal of Virology. 79 (4): 2413–2419. doi:10.1128/JVI.79.4.2413-2419.2005. PMC 546544. PMID 15681442. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC546544
Kesel AJ, Huang Z, Murray MG, Prichard MN, Caboni L, Nevin DK, Fayne D, Lloyd DG, Detorio MA, Schinazi RF (2014). "Retinazone inhibits certain blood-borne human viruses including Ebola virus Zaire". Antiviral Chemistry & Chemotherapy. 23 (5): 197–215. doi:10.3851/IMP2568. PMC 7714485. PMID 23636868. S2CID 34249020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714485
Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, et al. (2010). "Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations". Archives of Virology. 155 (12): 2083–2103. doi:10.1007/s00705-010-0814-x. PMC 3074192. PMID 21046175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074192
Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, et al. (2010). "Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations". Archives of Virology. 155 (12): 2083–2103. doi:10.1007/s00705-010-0814-x. PMC 3074192. PMID 21046175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074192
Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, et al. (2010). "Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations". Archives of Virology. 155 (12): 2083–2103. doi:10.1007/s00705-010-0814-x. PMC 3074192. PMID 21046175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074192
Carroll, S.A. (2012). "Molecular Evolution of Viruses of the Family Filoviridae Based on 97 Whole-Genome Sequences". Journal of Virology. 87 (5): 2608–2616. doi:10.1128/JVI.03118-12. PMC 3571414. PMID 23255795. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571414
Carroll, S.A. (2012). "Molecular Evolution of Viruses of the Family Filoviridae Based on 97 Whole-Genome Sequences". Journal of Virology. 87 (5): 2608–2616. doi:10.1128/JVI.03118-12. PMC 3571414. PMID 23255795. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571414
Li, Y.H. (2013). "Evolutionary history of Ebola virus". Epidemiology and Infection. 142 (6): 1138–1145. doi:10.1017/S0950268813002215. PMC 9151191. PMID 24040779. S2CID 9873900. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151191
Li, Y.H. (2013). "Evolutionary history of Ebola virus". Epidemiology and Infection. 142 (6): 1138–1145. doi:10.1017/S0950268813002215. PMC 9151191. PMID 24040779. S2CID 9873900. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151191
Wittmann TJ, Biek R, Hassanin A, Rouquet P, Reed P, Yaba P, Pourrut X, Real LA, Gonzalez JP, Leroy EM. "Isolates of Zaire ebolavirus from wild apes reveal genetic lineage and recombinants". Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17123–17127. Epub 2007 Oct 17. "Erratum" in: Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19656. PMID 17942693 /wiki/PMID_(identifier)
Wittmann TJ, Biek R, Hassanin A, Rouquet P, Reed P, Yaba P, Pourrut X, Real LA, Gonzalez JP, Leroy EM. "Isolates of Zaire ebolavirus from wild apes reveal genetic lineage and recombinants". Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17123–17127. Epub 2007 Oct 17. "Erratum" in: Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19656. PMID 17942693 /wiki/PMID_(identifier)
"Outbreaks Chronology: Ebola Virus Disease". Ebola Hemorrhagic Feve. CDC. 2 August 2017. Archived from the original on 17 May 2019. Retrieved 11 November 2017. https://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html
"Outbreaks Chronology: Ebola Virus Disease". Ebola Hemorrhagic Feve. CDC. 2 August 2017. Archived from the original on 17 May 2019. Retrieved 11 November 2017. https://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html
Kava, Alex (October 2008). Fiction Book Review: 'Exposed' by Alex Kava, Author . Mira (332p). PublishersWeekly.com. ISBN 978-0778325574. Archived from the original on 7 November 2021. Retrieved 7 November 2021. 978-0778325574
Close, William T. (1995). Ebola: A Documentary Novel of Its First Explosion. New York: Ivy Books. ISBN 978-0804114325. OCLC 32753758. At Google Books. 978-0804114325
Grove, Ryan (2 June 2006). Ebola: A Documentary Novel of Its First Explosion. Archived from the original on 21 October 2014. Retrieved 17 September 2014. https://www.amazon.com/Ebola-documentary-novel-first-explosion/dp/B007HEJSE6
Close, William T. (2002). Ebola: Through the Eyes of the People. Marbleton, Wyoming: Meadowlark Springs Productions. ISBN 978-0970337115. OCLC 49193962. Archived from the original on 14 January 2023. Retrieved 7 February 2016. At Google Books. 978-0970337115
Pink, Brenda (24 June 2008). "A fascinating perspective". Review of Close, William T., Ebola: Through the Eyes of the People. Archived from the original on 21 October 2014. Retrieved 17 September 2014. https://www.amazon.com/Ebola-Through-William-T-Close/product-reviews/0970337116
Preston, Richard (1995). The Hot Zone. New York: Anchor. ISBN 0385479565. OCLC 32052009. 0385479565
Clancy, Tom (1996). Executive Orders. New York: Putnam. ISBN 978-0399142185. OCLC 34878804. 978-0399142185
Stone, Oliver (2 September 1996). "Who's That in the Oval Office?". Books News & Reviews. The New York Times Company. Archived from the original on 10 April 2009. Retrieved 10 September 2014. /wiki/Oliver_Stone