Every simple polygon can be partitioned into non-overlapping triangles by a subset of its diagonals. When the polygon has
n
{\displaystyle n}
sides, this produces
n
−
2
{\displaystyle n-2}
triangles, separated by
n
−
3
{\displaystyle n-3}
diagonals. The resulting partition is called a polygon triangulation. The shape of a triangulated simple polygon can be uniquely determined by the internal angles of the polygon and by the cross-ratios of the quadrilaterals formed by pairs of triangles that share a diagonal.
Other computational problems studied for simple polygons include constructions of the longest diagonal or the longest line segment interior to a polygon, of the convex skull (the largest convex polygon within the given simple polygon), and of various one-dimensional skeletons approximating its shape, including the medial axis and straight skeleton. Researchers have also studied producing other polygons from simple polygons using their offset curves, unions and intersections, and Minkowski sums, but these operations do not always produce a simple polygon as their result. They can be defined in a way that always produces a two-dimensional region, but this requires careful definitions of the intersection and difference operations in order to avoid creating one-dimensional features or isolated points.
Every finite set of points in the plane that does not lie on a single line can be connected to form the vertices of a simple polygon (allowing 180° angles); for instance, one such polygon is the solution to the traveling salesperson problem. Connecting points to form a polygon in this way is called polygonalization.
Milnor, John W. (1950). "On the total curvature of knots". Annals of Mathematics. 2nd Series. 52: 248–257. doi:10.2307/1969467. /wiki/Doi_(identifier)
Preparata, Franco P.; Shamos, Michael Ian (1985). Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer-Verlag. p. 18. doi:10.1007/978-1-4612-1098-6. ISBN 978-1-4612-1098-6. 978-1-4612-1098-6
Everett, Hazel; Corneil, Derek (1995). "Negative results on characterizing visibility graphs". Computational Geometry: Theory & Applications. 5 (2): 51–63. doi:10.1016/0925-7721(95)00021-Z. MR 1353288. /wiki/Derek_Corneil
Preparata, Franco P.; Shamos, Michael Ian (1985). Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer-Verlag. p. 18. doi:10.1007/978-1-4612-1098-6. ISBN 978-1-4612-1098-6. 978-1-4612-1098-6
Aronov, Boris; Seidel, Raimund; Souvaine, Diane (1993). "On compatible triangulations of simple polygons". Computational Geometry: Theory & Applications. 3 (1): 27–35. doi:10.1016/0925-7721(93)90028-5. MR 1222755. /wiki/Boris_Aronov
Preparata, Franco P.; Shamos, Michael Ian (1985). Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer-Verlag. p. 18. doi:10.1007/978-1-4612-1098-6. ISBN 978-1-4612-1098-6. 978-1-4612-1098-6
Malkevitch, Joseph (2016). "Are precise definitions a good idea?". AMS Feature Column. American Mathematical Society. https://www.ams.org/publicoutreach/feature-column/fc-2016-01
McCallum, Duncan; Avis, David (1979). "A linear algorithm for finding the convex hull of a simple polygon". Information Processing Letters. 9 (5): 201–206. doi:10.1016/0020-0190(79)90069-3. MR 0552534. /wiki/David_Avis
de Berg, M.; van Kreveld, M.; Overmars, Mark; Schwarzkopf, O. (2008). Computational Geometry: Algorithms and Applications (3rd ed.). Springer. p. 58. doi:10.1007/978-3-540-77974-2. /wiki/Mark_de_Berg
Meisters, G. H. (1975). "Polygons have ears". The American Mathematical Monthly. 82 (6): 648–651. doi:10.2307/2319703. JSTOR 2319703. MR 0367792. /wiki/The_American_Mathematical_Monthly
Hales, Thomas C. (2007). "Jordan's proof of the Jordan curve theorem" (PDF). From Insight to Proof: Festschrift in Honour of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric. 10 (23). University of Białystok. /wiki/Thomas_Callister_Hales
Preparata, Franco P.; Shamos, Michael Ian (1985). Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer-Verlag. p. 18. doi:10.1007/978-1-4612-1098-6. ISBN 978-1-4612-1098-6. 978-1-4612-1098-6
Thomassen, Carsten (1992). "The Jordan-Schönflies theorem and the classification of surfaces". The American Mathematical Monthly. 99 (2): 116–130. doi:10.1080/00029890.1992.11995820. JSTOR 2324180. MR 1144352. /wiki/Carsten_Thomassen_(mathematician)
Margalit, Avraham; Knott, Gary D. (1989). "An algorithm for computing the union, intersection or difference of two polygons". Computers & Graphics. 13 (2): 167–183. doi:10.1016/0097-8493(89)90059-9. /wiki/Doi_(identifier)
Niven, Ivan; Zuckerman, H. S. (1967). "Lattice points and polygonal area". The American Mathematical Monthly. 74 (10): 1195–1200. doi:10.1080/00029890.1967.12000095. JSTOR 2315660. MR 0225216. /wiki/Ivan_M._Niven
Margalit, Avraham; Knott, Gary D. (1989). "An algorithm for computing the union, intersection or difference of two polygons". Computers & Graphics. 13 (2): 167–183. doi:10.1016/0097-8493(89)90059-9. /wiki/Doi_(identifier)
Preparata, Franco P.; Shamos, Michael Ian (1985). Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer-Verlag. p. 18. doi:10.1007/978-1-4612-1098-6. ISBN 978-1-4612-1098-6. 978-1-4612-1098-6
Aggarwal, Alok; Suri, Subhash (1990). "Computing the longest diagonal of a simple polygon". Information Processing Letters. 35 (1): 13–18. doi:10.1016/0020-0190(90)90167-V. MR 1069001. /wiki/Subhash_Suri
Richmond, Bettina; Richmond, Thomas (2023). A Discrete Transition to Advanced Mathematics. Pure and Applied Undergraduate Texts. Vol. 63 (2nd ed.). American Mathematical Society. p. 421. ISBN 9781470472047. 9781470472047
Meisters, G. H. (1975). "Polygons have ears". The American Mathematical Monthly. 82 (6): 648–651. doi:10.2307/2319703. JSTOR 2319703. MR 0367792. /wiki/The_American_Mathematical_Monthly
Snoeyink, Jack (1999). "Cross-ratios and angles determine a polygon". Discrete & Computational Geometry. 22 (4): 619–631. doi:10.1007/PL00009481. MR 1721028. https://doi.org/10.1007%2FPL00009481
Meisters, G. H. (1975). "Polygons have ears". The American Mathematical Monthly. 82 (6): 648–651. doi:10.2307/2319703. JSTOR 2319703. MR 0367792. /wiki/The_American_Mathematical_Monthly
Toussaint, Godfried (1991). "Anthropomorphic polygons". The American Mathematical Monthly. 98 (1): 31–35. doi:10.2307/2324033. JSTOR 2324033. MR 1083611. /wiki/Godfried_Toussaint
Fisk, S. (1978). "A short proof of Chvátal's watchman theorem". Journal of Combinatorial Theory, Series B. 24 (3): 374. doi:10.1016/0095-8956(78)90059-X. https://doi.org/10.1016%2F0095-8956%2878%2990059-X
Preparata, Franco P.; Shamos, Michael Ian (1985). Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer-Verlag. p. 18. doi:10.1007/978-1-4612-1098-6. ISBN 978-1-4612-1098-6. 978-1-4612-1098-6
Preparata, Franco P.; Supowit, Kenneth J. (1981). "Testing a simple polygon for monotonicity". Information Processing Letters. 12 (4): 161–164. doi:10.1016/0020-0190(81)90091-0. /wiki/Franco_P._Preparata
Snoeyink, Jack (2017). "Point Location" (PDF). In Toth, Csaba D.; O'Rourke, Joseph; Goodman, Jacob E. (eds.). Handbook of Discrete and Computational Geometry (3rd ed.). Chapman and Hall/CRC Press. pp. 1005–1023. ISBN 978-1-498-71139-5. 978-1-498-71139-5
Braden, Bart (1986). "The surveyor's area formula" (PDF). The College Mathematics Journal. 17 (4): 326–337. doi:10.2307/2686282. JSTOR 2686282. Archived from the original (PDF) on 2012-11-07. https://web.archive.org/web/20121107190918/http://www.maa.org/pubs/Calc_articles/ma063.pdf
Niven, Ivan; Zuckerman, H. S. (1967). "Lattice points and polygonal area". The American Mathematical Monthly. 74 (10): 1195–1200. doi:10.1080/00029890.1967.12000095. JSTOR 2315660. MR 0225216. /wiki/Ivan_M._Niven
Grünbaum, Branko; Shephard, G. C. (February 1993). "Pick's theorem". The American Mathematical Monthly. 100 (2): 150–161. doi:10.2307/2323771. JSTOR 2323771. MR 1212401. /wiki/Branko_Gr%C3%BCnbaum
McCallum, Duncan; Avis, David (1979). "A linear algorithm for finding the convex hull of a simple polygon". Information Processing Letters. 9 (5): 201–206. doi:10.1016/0020-0190(79)90069-3. MR 0552534. /wiki/David_Avis
Chazelle, Bernard (1991). "Triangulating a simple polygon in linear time". Discrete & Computational Geometry. 6 (5): 485–524. doi:10.1007/BF02574703. MR 1115104. /wiki/Bernard_Chazelle
Urrutia, Jorge (2000). "Art gallery and illumination problems". In Sack, Jörg-Rüdiger; Urrutia, Jorge (eds.). Handbook of Computational Geometry. Amsterdam: North-Holland. pp. 973–1027. doi:10.1016/B978-044482537-7/50023-1. ISBN 0-444-82537-1. MR 1746693. 0-444-82537-1
Aichholzer, Oswin; Mulzer, Wolfgang; Pilz, Alexander (2015). "Flip distance between triangulations of a simple polygon is NP-complete". Discrete & Computational Geometry. 54 (2): 368–389. arXiv:1209.0579. doi:10.1007/s00454-015-9709-7. MR 3372115. /wiki/Discrete_%26_Computational_Geometry
Ahn, Hee-Kap; Barba, Luis; Bose, Prosenjit; De Carufel, Jean-Lou; Korman, Matias; Oh, Eunjin (2016). "A linear-time algorithm for the geodesic center of a simple polygon". Discrete & Computational Geometry. 56 (4): 836–859. arXiv:1501.00561. doi:10.1007/s00454-016-9796-0. MR 3561791. /wiki/Jit_Bose
Guibas, Leonidas; Hershberger, John; Leven, Daniel; Sharir, Micha; Tarjan, Robert E. (1987). "Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons". Algorithmica. 2 (2): 209–233. doi:10.1007/BF01840360. MR 0895445. /wiki/Leonidas_J._Guibas
Ahn, Hee-Kap; Barba, Luis; Bose, Prosenjit; De Carufel, Jean-Lou; Korman, Matias; Oh, Eunjin (2016). "A linear-time algorithm for the geodesic center of a simple polygon". Discrete & Computational Geometry. 56 (4): 836–859. arXiv:1501.00561. doi:10.1007/s00454-016-9796-0. MR 3561791. /wiki/Jit_Bose
El Gindy, Hossam; Avis, David (1981). "A linear algorithm for computing the visibility polygon from a point". Journal of Algorithms. 2 (2): 186–197. doi:10.1016/0196-6774(81)90019-5. /wiki/David_Avis
Guibas, Leonidas; Hershberger, John; Leven, Daniel; Sharir, Micha; Tarjan, Robert E. (1987). "Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons". Algorithmica. 2 (2): 209–233. doi:10.1007/BF01840360. MR 0895445. /wiki/Leonidas_J._Guibas
Aggarwal, Alok; Suri, Subhash (1990). "Computing the longest diagonal of a simple polygon". Information Processing Letters. 35 (1): 13–18. doi:10.1016/0020-0190(90)90167-V. MR 1069001. /wiki/Subhash_Suri
Chang, J. S.; Yap, C.-K. (1986). "A polynomial solution for the potato-peeling problem". Discrete & Computational Geometry. 1 (2): 155–182. doi:10.1007/BF02187692. MR 0834056. https://doi.org/10.1007%2FBF02187692
Cabello, Sergio; Cibulka, Josef; Kynčl, Jan; Saumell, Maria; Valtr, Pavel (2017). "Peeling potatoes near-optimally in near-linear time". SIAM Journal on Computing. 46 (5): 1574–1602. arXiv:1406.1368. doi:10.1137/16M1079695. MR 3708542. /wiki/SIAM_Journal_on_Computing
Chin, Francis Y. L.; Snoeyink, Jack; Wang, Cao An (1999). "Finding the medial axis of a simple polygon in linear time". Discrete & Computational Geometry. 21 (3): 405–420. doi:10.1007/PL00009429. MR 1672988. /wiki/Francis_Y._L._Chin
Cheng, Siu-Wing; Mencel, Liam; Vigneron, Antoine (2016). "A faster algorithm for computing straight skeletons". ACM Transactions on Algorithms. 12 (3): 44:1–44:21. arXiv:1405.4691. doi:10.1145/2898961. /wiki/ACM_Transactions_on_Algorithms
Palfrader, Peter; Held, Martin (February 2015). "Computing mitered offset curves based on straight skeletons". Computer-Aided Design and Applications. 12 (4): 414–424. doi:10.1080/16864360.2014.997637. https://doi.org/10.1080%2F16864360.2014.997637
Margalit, Avraham; Knott, Gary D. (1989). "An algorithm for computing the union, intersection or difference of two polygons". Computers & Graphics. 13 (2): 167–183. doi:10.1016/0097-8493(89)90059-9. /wiki/Doi_(identifier)
Oks, Eduard; Sharir, Micha (2006). "Minkowski sums of monotone and general simple polygons". Discrete & Computational Geometry. 35 (2): 223–240. doi:10.1007/s00454-005-1206-y. MR 2195052. /wiki/Micha_Sharir
Margalit, Avraham; Knott, Gary D. (1989). "An algorithm for computing the union, intersection or difference of two polygons". Computers & Graphics. 13 (2): 167–183. doi:10.1016/0097-8493(89)90059-9. /wiki/Doi_(identifier)
Trefethen, Lloyd N.; Driscoll, Tobin A. (1998). "Schwarz–Christoffel mapping in the computer era". Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998). Documenta Mathematica. pp. 533–542. MR 1648186. /wiki/Nick_Trefethen
Quintas, L. V.; Supnick, Fred (1965). "On some properties of shortest Hamiltonian circuits". The American Mathematical Monthly. 72 (9): 977–980. doi:10.2307/2313333. JSTOR 2313333. MR 0188872. /wiki/The_American_Mathematical_Monthly
Demaine, Erik D.; Fekete, Sándor P.; Keldenich, Phillip; Krupke, Dominik; Mitchell, Joseph S. B. (2022). "Area-optimal simple polygonalizations: the CG challenge 2019". ACM Journal of Experimental Algorithmics. 27: A2.4:1–12. doi:10.1145/3504000. hdl:1721.1/146480. MR 4390039. /wiki/Erik_Demaine
Dobkin, David; Guibas, Leonidas; Hershberger, John; Snoeyink, Jack (1993). "An efficient algorithm for finding the CSG representation of a simple polygon". Algorithmica. 10 (1): 1–23. doi:10.1007/BF01908629. MR 1230699. /wiki/David_P._Dobkin
Everett, Hazel; Corneil, Derek (1995). "Negative results on characterizing visibility graphs". Computational Geometry: Theory & Applications. 5 (2): 51–63. doi:10.1016/0925-7721(95)00021-Z. MR 1353288. /wiki/Derek_Corneil
Ghosh, Subir Kumar; Goswami, Partha P. (2013). "Unsolved problems in visibility graphs of points, segments, and polygons". ACM Computing Surveys. 46 (2): 22:1–22:29. arXiv:1012.5187. doi:10.1145/2543581.2543589. /wiki/ACM_Computing_Surveys