In the case where the order s {\displaystyle s} is an integer, it will be represented by s = n {\displaystyle s=n} (or s = − n {\displaystyle s=-n} when negative). It is often convenient to define μ = ln ( z ) {\displaystyle \mu =\ln(z)} where ln ( z ) {\displaystyle \ln(z)} is the principal branch of the complex logarithm Ln ( z ) {\displaystyle \operatorname {Ln} (z)} so that − π < Im ( μ ) ≤ π . {\displaystyle -\pi <\operatorname {Im} (\mu )\leq \pi .} Also, all exponentiation will be assumed to be single-valued: z s = exp ( s ln ( z ) ) . {\displaystyle z^{s}=\exp(s\ln(z)).}
Depending on the order s {\displaystyle s} , the polylogarithm may be multi-valued. The principal branch of Li s ( z ) {\displaystyle \operatorname {Li} _{s}(z)} is taken to be given for | z | < 1 {\displaystyle |z|<1} by the above series definition and taken to be continuous except on the positive real axis, where a cut is made from z = 1 {\displaystyle z=1} to ∞ {\displaystyle \infty } such that the axis is placed on the lower half plane of z {\displaystyle z} . In terms of μ {\displaystyle \mu } , this amounts to − π < arg ( − μ ) ≤ π {\displaystyle -\pi <\arg(-\mu )\leq \pi } . The discontinuity of the polylogarithm in dependence on μ {\displaystyle \mu } can sometimes be confusing.
For real argument z {\displaystyle z} , the polylogarithm of real order s {\displaystyle s} is real if z < 1 {\displaystyle z<1} , and its imaginary part for z ≥ 1 {\displaystyle z\geq 1} is (Wood 1992, §3):
Im ( Li s ( z ) ) = − π μ s − 1 Γ ( s ) . {\displaystyle \operatorname {Im} \left(\operatorname {Li} _{s}(z)\right)=-{{\pi \mu ^{s-1}} \over {\Gamma (s)}}.}
Going across the cut, if ε is an infinitesimally small positive real number, then:
Im ( Li s ( z + i ϵ ) ) = π μ s − 1 Γ ( s ) . {\displaystyle \operatorname {Im} \left(\operatorname {Li} _{s}(z+i\epsilon )\right)={{\pi \mu ^{s-1}} \over {\Gamma (s)}}.}
Both can be concluded from the series expansion (see below) of Lis(eμ) about μ = 0.
The derivatives of the polylogarithm follow from the defining power series:
z ∂ Li s ( z ) ∂ z = Li s − 1 ( z ) {\displaystyle z{\frac {\partial \operatorname {Li} _{s}(z)}{\partial z}}=\operatorname {Li} _{s-1}(z)} ∂ Li s ( e μ ) ∂ μ = Li s − 1 ( e μ ) . {\displaystyle {\frac {\partial \operatorname {Li} _{s}(e^{\mu })}{\partial \mu }}=\operatorname {Li} _{s-1}(e^{\mu }).}
The square relationship is seen from the series definition, and is related to the duplication formula (see also Clunie (1954), Schrödinger (1952)):
Li s ( − z ) + Li s ( z ) = 2 1 − s Li s ( z 2 ) . {\displaystyle \operatorname {Li} _{s}(-z)+\operatorname {Li} _{s}(z)=2^{1-s}\operatorname {Li} _{s}(z^{2}).}
Kummer's function obeys a very similar duplication formula. This is a special case of the multiplication formula, for any positive integer p:
∑ m = 0 p − 1 Li s ( z e 2 π i m / p ) = p 1 − s Li s ( z p ) , {\displaystyle \sum _{m=0}^{p-1}\operatorname {Li} _{s}(ze^{2\pi im/p})=p^{1-s}\operatorname {Li} _{s}(z^{p}),}
which can be proved using the series definition of the polylogarithm and the orthogonality of the exponential terms (see e.g. discrete Fourier transform).
Another important property, the inversion formula, involves the Hurwitz zeta function or the Bernoulli polynomials and is found under relationship to other functions below.
For particular cases, the polylogarithm may be expressed in terms of other functions (see below). Particular values for the polylogarithm may thus also be found as particular values of these other functions.
Any of the following integral representations furnishes the analytic continuation of the polylogarithm beyond the circle of convergence |z| = 1 of the defining power series.
For |z| ≫ 1, the polylogarithm can be expanded into asymptotic series in terms of ln(−z):
Li s ( z ) = ± i π Γ ( s ) [ ln ( − z ) ± i π ] s − 1 − ∑ k = 0 ∞ ( − 1 ) k ( 2 π ) 2 k B 2 k ( 2 k ) ! [ ln ( − z ) ± i π ] s − 2 k Γ ( s + 1 − 2 k ) , {\displaystyle \operatorname {Li} _{s}(z)={\pm i\pi \over \Gamma (s)}[\ln(-z)\pm i\pi ]^{s-1}-\sum _{k=0}^{\infty }(-1)^{k}(2\pi )^{2k}{B_{2k} \over (2k)!}{[\ln(-z)\pm i\pi ]^{s-2k} \over \Gamma (s+1-2k)},} Li s ( z ) = ∑ k = 0 ∞ ( − 1 ) k ( 1 − 2 1 − 2 k ) ( 2 π ) 2 k B 2 k ( 2 k ) ! [ ln ( − z ) ] s − 2 k Γ ( s + 1 − 2 k ) , {\displaystyle \operatorname {Li} _{s}(z)=\sum _{k=0}^{\infty }(-1)^{k}(1-2^{1-2k})(2\pi )^{2k}{B_{2k} \over (2k)!}{[\ln(-z)]^{s-2k} \over \Gamma (s+1-2k)},}
where B2k are the Bernoulli numbers. Both versions hold for all s and for any arg(z). As usual, the summation should be terminated when the terms start growing in magnitude. For negative integer s, the expansions vanish entirely; for non-negative integer s, they break off after a finite number of terms. Wood (1992, § 11) describes a method for obtaining these series from the Bose–Einstein integral representation (his equation 11.2 for Lis(eμ) requires −2π < Im(μ) ≤ 0).
The following limits result from the various representations of the polylogarithm (Wood 1992, § 22):
Li s ( z ) ∼ | z | → 0 z {\displaystyle \operatorname {Li} _{s}(z)\sim _{|z|\to 0}z} Li s ( e μ ) ∼ | μ | → 0 Γ ( 1 − s ) ( − μ ) s − 1 ( Re ( s ) < 1 ) {\displaystyle \operatorname {Li} _{s}(e^{\mu })\sim _{|\mu |\to 0}\Gamma (1-s)(-\mu )^{s-1}\qquad (\operatorname {Re} (s)<1)} Li s ( ± e μ ) ∼ Re ( μ ) → ∞ − μ s Γ ( s + 1 ) ( s ≠ − 1 , − 2 , − 3 , … ) {\displaystyle \operatorname {Li} _{s}(\pm e^{\mu })\sim _{\operatorname {Re} (\mu )\to \infty }-{\mu ^{s} \over \Gamma (s+1)}\qquad (s\neq -1,-2,-3,\ldots )} Li − n ( e μ ) ∼ Re ( μ ) → ∞ − ( − 1 ) n e − μ ( n = 1 , 2 , 3 , … ) {\displaystyle \operatorname {Li} _{-n}(e^{\mu })\sim _{\operatorname {Re} (\mu )\to \infty }-(-1)^{n}e^{-\mu }\qquad (n=1,2,3,\ldots )} Li s ( z ) ∼ Re ( s ) → ∞ z {\displaystyle \operatorname {Li} _{s}(z)\sim _{\operatorname {Re} (s)\to \infty }z} Li s ( e μ ) ∼ Re ( s ) → − ∞ Γ ( 1 − s ) ( − μ ) s − 1 ( − π < Im ( μ ) < π ) {\displaystyle \operatorname {Li} _{s}(e^{\mu })\sim _{\operatorname {Re} (s)\to -\infty }\Gamma (1-s)(-\mu )^{s-1}\qquad (-\pi <\operatorname {Im} (\mu )<\pi )} Li s ( − e μ ) ∼ Re ( s ) → − ∞ Γ ( 1 − s ) [ ( − μ − i π ) s − 1 + ( − μ + i π ) s − 1 ] ( Im ( μ ) = 0 ) {\displaystyle \operatorname {Li} _{s}(-e^{\mu })\sim _{\operatorname {Re} (s)\to -\infty }\Gamma (1-s)\left[(-\mu -i\pi )^{s-1}+(-\mu +i\pi )^{s-1}\right]\qquad (\operatorname {Im} (\mu )=0)}
Wood's first limit for Re(μ) → ∞ has been corrected in accordance with his equation 11.3. The limit for Re(s) → −∞ follows from the general relation of the polylogarithm with the Hurwitz zeta function (see above).
Main article: Dilogarithm
The dilogarithm is the polylogarithm of order s = 2. An alternate integral expression of the dilogarithm for arbitrary complex argument z is (Abramowitz & Stegun 1972, § 27.7): Li 2 ( z ) = − ∫ 0 z ln ( 1 − t ) t d t = − ∫ 0 1 ln ( 1 − z t ) t d t . {\displaystyle \operatorname {Li} _{2}(z)=-\int _{0}^{z}{\ln(1-t) \over t}dt=-\int _{0}^{1}{\ln(1-zt) \over t}dt.}
A source of confusion is that some computer algebra systems define the dilogarithm as dilog(z) = Li2(1−z).
In the case of real z ≥ 1 the first integral expression for the dilogarithm can be written as Li 2 ( z ) = π 2 6 − ∫ 1 z ln ( t − 1 ) t d t − i π ln z {\displaystyle \operatorname {Li} _{2}(z)={\frac {\pi ^{2}}{6}}-\int _{1}^{z}{\ln(t-1) \over t}dt-i\pi \ln z}
from which expanding ln(t−1) and integrating term by term we obtain
Li 2 ( z ) = π 2 3 − 1 2 ( ln z ) 2 − ∑ k = 1 ∞ 1 k 2 z k − i π ln z ( z ≥ 1 ) . {\displaystyle \operatorname {Li} _{2}(z)={\frac {\pi ^{2}}{3}}-{\frac {1}{2}}(\ln z)^{2}-\sum _{k=1}^{\infty }{1 \over k^{2}z^{k}}-i\pi \ln z\qquad (z\geq 1).}
The Abel identity for the dilogarithm is given by (Abel 1881)
Li 2 ( x 1 − y ) + Li 2 ( y 1 − x ) − Li 2 ( x y ( 1 − x ) ( 1 − y ) ) = Li 2 ( x ) + Li 2 ( y ) + ln ( 1 − x ) ln ( 1 − y ) {\displaystyle \operatorname {Li} _{2}\left({\frac {x}{1-y}}\right)+\operatorname {Li} _{2}\left({\frac {y}{1-x}}\right)-\operatorname {Li} _{2}\left({\frac {xy}{(1-x)(1-y)}}\right)=\operatorname {Li} _{2}(x)+\operatorname {Li} _{2}(y)+\ln(1-x)\ln(1-y)}
( Re ( x ) ≤ 1 2 ∧ Re ( y ) ≤ 1 2 ∨ Im ( x ) > 0 ∧ Im ( y ) > 0 ∨ Im ( x ) < 0 ∧ Im ( y ) < 0 ∨ … ) . {\displaystyle (\operatorname {Re} (x)\leq {\tfrac {1}{2}}\wedge \operatorname {Re} (y)\leq {\tfrac {1}{2}}\vee \operatorname {Im} (x)>0\wedge \operatorname {Im} (y)>0\vee \operatorname {Im} (x)<0\wedge \operatorname {Im} (y)<0\vee \ldots ).}
This is immediately seen to hold for either x = 0 or y = 0, and for general arguments is then easily verified by differentiation ∂/∂x ∂/∂y. For y = 1−x the identity reduces to Euler's reflection formula Li 2 ( x ) + Li 2 ( 1 − x ) = 1 6 π 2 − ln ( x ) ln ( 1 − x ) , {\displaystyle \operatorname {Li} _{2}\left(x\right)+\operatorname {Li} _{2}\left(1-x\right)={\frac {1}{6}}\pi ^{2}-\ln(x)\ln(1-x),} where Li2(1) = ζ(2) = 1⁄6 π2 has been used and x may take any complex value.
In terms of the new variables u = x/(1−y), v = y/(1−x) the Abel identity reads Li 2 ( u ) + Li 2 ( v ) − Li 2 ( u v ) = Li 2 ( u − u v 1 − u v ) + Li 2 ( v − u v 1 − u v ) + ln ( 1 − u 1 − u v ) ln ( 1 − v 1 − u v ) , {\displaystyle \operatorname {Li} _{2}(u)+\operatorname {Li} _{2}(v)-\operatorname {Li} _{2}(uv)=\operatorname {Li} _{2}\left({\frac {u-uv}{1-uv}}\right)+\operatorname {Li} _{2}\left({\frac {v-uv}{1-uv}}\right)+\ln \left({\frac {1-u}{1-uv}}\right)\ln \left({\frac {1-v}{1-uv}}\right),} which corresponds to the pentagon identity given in (Rogers 1907).
From the Abel identity for x = y = 1−z and the square relationship we have Landen's identity Li 2 ( 1 − z ) + Li 2 ( 1 − 1 z ) = − 1 2 ( ln z ) 2 ( z ∉ ] − ∞ ; 0 ] ) , {\displaystyle \operatorname {Li} _{2}(1-z)+\operatorname {Li} _{2}\left(1-{\frac {1}{z}}\right)=-{\frac {1}{2}}(\ln z)^{2}\qquad (z\not \in ~]-\infty ;0]),} and applying the reflection formula to each dilogarithm we find the inversion formula Li 2 ( z ) + Li 2 ( 1 / z ) = − 1 6 π 2 − 1 2 [ ln ( − z ) ] 2 ( z ∉ [ 0 ; 1 [ ) , {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(1/z)=-{\tfrac {1}{6}}\pi ^{2}-{\tfrac {1}{2}}[\ln(-z)]^{2}\qquad (z\not \in [0;1[),}
and for real z ≥ 1 also Li 2 ( z ) + Li 2 ( 1 / z ) = 1 3 π 2 − 1 2 ( ln z ) 2 − i π ln z . {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(1/z)={\tfrac {1}{3}}\pi ^{2}-{\tfrac {1}{2}}(\ln z)^{2}-i\pi \ln z.}
Known closed-form evaluations of the dilogarithm at special arguments are collected in the table below. Arguments in the first column are related by reflection x ↔ 1−x or inversion x ↔ 1⁄x to either x = 0 or x = −1; arguments in the third column are all interrelated by these operations.
Maximon (2003) discusses the 17th to 19th century references. The reflection formula was already published by Landen in 1760, prior to its appearance in a 1768 book by Euler (Maximon 2003, § 10); an equivalent to Abel's identity was already published by Spence in 1809, before Abel wrote his manuscript in 1826 (Zagier 1989, § 2). The designation bilogarithmische Function was introduced by Carl Johan Danielsson Hill (professor in Lund, Sweden) in 1828 (Maximon 2003, § 10). Don Zagier (1989) has remarked that the dilogarithm is the only mathematical function possessing a sense of humor.
Leonard Lewin discovered a remarkable and broad generalization of a number of classical relationships on the polylogarithm for special values. These are now called polylogarithm ladders. Define ρ = 1 2 ( 5 − 1 ) {\displaystyle \rho ={\tfrac {1}{2}}({\sqrt {5}}-1)} as the reciprocal of the golden ratio. Then two simple examples of dilogarithm ladders are
Li 2 ( ρ 6 ) = 4 Li 2 ( ρ 3 ) + 3 Li 2 ( ρ 2 ) − 6 Li 2 ( ρ ) + 7 30 π 2 {\displaystyle \operatorname {Li} _{2}(\rho ^{6})=4\operatorname {Li} _{2}(\rho ^{3})+3\operatorname {Li} _{2}(\rho ^{2})-6\operatorname {Li} _{2}(\rho )+{\tfrac {7}{30}}\pi ^{2}}
given by Coxeter (1935) and
Li 2 ( ρ ) = 1 10 π 2 − ln 2 ρ {\displaystyle \operatorname {Li} _{2}(\rho )={\tfrac {1}{10}}\pi ^{2}-\ln ^{2}\rho }
given by Landen. Polylogarithm ladders occur naturally and deeply in K-theory and algebraic geometry. Polylogarithm ladders provide the basis for the rapid computations of various mathematical constants by means of the BBP algorithm (Bailey, Borwein & Plouffe 1997).
The polylogarithm has two branch points; one at z = 1 and another at z = 0. The second branch point, at z = 0, is not visible on the main sheet of the polylogarithm; it becomes visible only when the function is analytically continued to its other sheets. The monodromy group for the polylogarithm consists of the homotopy classes of loops that wind around the two branch points. Denoting these two by m0 and m1, the monodromy group has the group presentation
⟨ m 0 , m 1 | w = m 0 m 1 m 0 − 1 m 1 − 1 , w m 1 = m 1 w ⟩ . {\displaystyle \langle m_{0},m_{1}\vert w=m_{0}m_{1}m_{0}^{-1}m_{1}^{-1},wm_{1}=m_{1}w\rangle .}
For the special case of the dilogarithm, one also has that wm0 = m0w, and the monodromy group becomes the Heisenberg group (identifying m0, m1 and w with x, y, z) (Vepstas 2008).
Bose integral is result of multiplication between Gamma function and Zeta function. One can begin with equation for Bose integral, then use series equation. ∫ 0 ∞ x s e x − 1 d x = ∫ 0 ∞ x s 1 e x − 1 d x = ∫ 0 ∞ x s e x 1 1 − 1 e x d x ∧ 1 1 − r = ∑ n = 0 ∞ r n {\displaystyle \int _{0}^{\infty }{\frac {x^{s}}{e^{x}-1}}dx=\int _{0}^{\infty }x^{s}{\frac {1}{e^{x}-1}}dx=\int _{0}^{\infty }{\frac {x^{s}}{e^{x}}}{\frac {1}{1-{\frac {1}{e^{x}}}}}dx\quad \wedge \quad {\frac {1}{1-r}}=\sum _{n=0}^{\infty }r^{n}} ∫ 0 ∞ x s e x ∑ n = 0 ∞ ( 1 e x ) n d x = ∫ 0 ∞ x s e x ∑ n = 0 ∞ e − n x d x = ∑ n = 0 ∞ ∫ 0 ∞ x s e − n x e − x d x {\displaystyle \int _{0}^{\infty }{\frac {x^{s}}{e^{x}}}\sum _{n=0}^{\infty }\left({\frac {1}{e^{x}}}\right)^{n}dx=\int _{0}^{\infty }{\frac {x^{s}}{e^{x}}}\sum _{n=0}^{\infty }e^{-nx}dx=\sum _{n=0}^{\infty }\int _{0}^{\infty }x^{s}e^{-nx}e^{-x}dx} Secondly, regroup expressions. ∑ n = 0 ∞ ∫ 0 ∞ x s e − ( n + 1 ) x d x ∧ u = ( n + 1 ) x , d u = ( n + 1 ) d x ⇒ d x = d u n + 1 {\displaystyle \sum _{n=0}^{\infty }\int _{0}^{\infty }x^{s}e^{-(n+1)x}dx\quad \wedge \quad u=(n+1)x,du=(n+1)dx\Rightarrow dx={\frac {du}{n+1}}} ∑ n = 0 ∞ ∫ 0 ∞ ( u n + 1 ) s e − u d u n + 1 = ∑ n = 0 ∞ ∫ 0 ∞ 1 ( n + 1 ) s + 1 u s e − u d u {\displaystyle \sum _{n=0}^{\infty }\int _{0}^{\infty }\left({\frac {u}{n+1}}\right)^{s}e^{-u}{\frac {du}{n+1}}=\sum _{n=0}^{\infty }\int _{0}^{\infty }{\frac {1}{(n+1)^{s+1}}}u^{s}e^{-u}du} ∑ n = 0 ∞ 1 ( n + 1 ) s + 1 ( ∫ 0 ∞ u s e − u d u ) = ( ∫ 0 ∞ u s e − u d u ) ( ∑ n = 0 ∞ 1 ( n + 1 ) s + 1 ) = {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{(n+1)^{s+1}}}\left(\int _{0}^{\infty }u^{s}e^{-u}du\right)=\left(\int _{0}^{\infty }u^{s}e^{-u}du\right)\left(\sum _{n=0}^{\infty }{\frac {1}{(n+1)^{s+1}}}\right)=} ( ∫ 0 ∞ u ( s + 1 ) − 1 e − u d u ) ( ∑ k = 1 ∞ 1 k s + 1 ) = Γ ( s + 1 ) ζ ( s + 1 ) . {\displaystyle \left(\int _{0}^{\infty }u^{(s+1)-1}e^{-u}du\right)\left(\sum _{k=1}^{\infty }{\frac {1}{k^{s+1}}}\right)=\Gamma (s+1)\zeta (s+1).} ↩