Menu
Home
People
Places
Arts
History
Plants & Animals
Science
Life & Culture
Technology
Reference.org
First variation
open-in-new
Example
Compute the first variation of
J ( y ) = ∫ a b y y ′ d x . {\displaystyle J(y)=\int _{a}^{b}yy'\mathrm {d} x.}
From the definition above,
δ J ( y , h ) = d d ε J ( y + ε h ) | ε = 0 = d d ε ∫ a b ( y + ε h ) ( y ′ + ε h ′ ) d x | ε = 0 = d d ε ∫ a b ( y y ′ + y ε h ′ + y ′ ε h + ε 2 h h ′ ) d x | ε = 0 = ∫ a b d d ε ( y y ′ + y ε h ′ + y ′ ε h + ε 2 h h ′ ) d x | ε = 0 = ∫ a b ( y h ′ + y ′ h + 2 ε h h ′ ) d x | ε = 0 = ∫ a b ( y h ′ + y ′ h ) d x {\displaystyle {\begin{aligned}\delta J(y,h)&=\left.{\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}J(y+\varepsilon h)\right|_{\varepsilon =0}\\&=\left.{\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}\int _{a}^{b}(y+\varepsilon h)(y^{\prime }+\varepsilon h^{\prime })\ \mathrm {d} x\right|_{\varepsilon =0}\\&=\left.{\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}\int _{a}^{b}(yy^{\prime }+y\varepsilon h^{\prime }+y^{\prime }\varepsilon h+\varepsilon ^{2}hh^{\prime })\ \mathrm {d} x\right|_{\varepsilon =0}\\&=\left.\int _{a}^{b}{\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}(yy^{\prime }+y\varepsilon h^{\prime }+y^{\prime }\varepsilon h+\varepsilon ^{2}hh^{\prime })\ \mathrm {d} x\right|_{\varepsilon =0}\\&=\left.\int _{a}^{b}(yh^{\prime }+y^{\prime }h+2\varepsilon hh^{\prime })\ \mathrm {d} x\right|_{\varepsilon =0}\\&=\int _{a}^{b}(yh^{\prime }+y^{\prime }h)\ \mathrm {d} x\\\end{aligned}}}
See also
Calculus of variations
Functional derivative