Another representation for solid partitions is in the form of Ferrers diagrams. The Ferrers diagram of a solid partition of n {\displaystyle n} is a collection of n {\displaystyle n} points or nodes, λ = ( y 1 , y 2 , … , y n ) {\displaystyle \lambda =(\mathbf {y} _{1},\mathbf {y} _{2},\ldots ,\mathbf {y} _{n})} , with y i ∈ Z ≥ 0 4 {\displaystyle \mathbf {y} _{i}\in \mathbb {Z} _{\geq 0}^{4}} satisfying the condition:3
For instance, the Ferrers diagram
where each column is a node, represents a solid partition of 5 {\displaystyle 5} . There is a natural action of the permutation group S 4 {\displaystyle S_{4}} on a Ferrers diagram – this corresponds to permuting the four coordinates of all nodes. This generalises the operation denoted by conjugation on usual partitions.
Given a Ferrers diagram, one constructs the solid partition (as in the main definition) as follows.
Given a set of n i , j , k {\displaystyle n_{i,j,k}} that form a solid partition, one obtains the corresponding Ferrers diagram as follows.
For example, the Ferrers diagram with 5 {\displaystyle 5} nodes given above corresponds to the solid partition with
with all other n i , j , k {\displaystyle n_{i,j,k}} vanishing.
Let p 3 ( 0 ) ≡ 1 {\displaystyle p_{3}(0)\equiv 1} . Define the generating function of solid partitions, P 3 ( q ) {\displaystyle P_{3}(q)} , by
The generating functions of integer partitions and plane partitions have simple product formulae, due to Euler and MacMahon, respectively. However, a guess of MacMahon fails to correctly reproduce the solid partitions of 6.4 It appears that there is no simple formula for the generating function of solid partitions; in particular, there cannot be any formula analogous to the product formulas of Euler and MacMahon.5
Given the lack of an explicitly known generating function, the enumerations of the numbers of solid partitions for larger integers have been carried out numerically. There are two algorithms that are used to enumerate solid partitions and their higher-dimensional generalizations. The work of Atkin. et al. used an algorithm due to Bratley and McKay.6 In 1970, Knuth proposed a different algorithm to enumerate topological sequences that he used to evaluate numbers of solid partitions of all integers n ≤ 28 {\displaystyle n\leq 28} .7 Mustonen and Rajesh extended the enumeration for all integers n ≤ 50 {\displaystyle n\leq 50} .8 In 2010, S. Balakrishnan proposed a parallel version of Knuth's algorithm that has been used to extend the enumeration to all integers n ≤ 72 {\displaystyle n\leq 72} .9 One finds
which is a 19 digit number illustrating the difficulty in carrying out such exact enumerations.
It is conjectured that there exists a constant c {\displaystyle c} such that101112
lim n → ∞ log p 3 ( n ) n 3 / 4 = c . {\displaystyle \lim _{n\rightarrow \infty }{\frac {\log p_{3}(n)}{n^{3/4}}}=c.}
MacMahon, P. A. (1916). Combinatory Analysis. Vol. 2. London and New York: Cambridge University Press. p. 332. /wiki/Percy_Alexander_MacMahon ↩
Andrews, George E. (1984). The theory of partitions. Cambridge University Press. doi:10.1017/CBO9780511608650. /wiki/George_Andrews_(mathematician) ↩
Atkin, A. O. L.; Bratley, P.; McDonald, I. G.; McKay, J. K. S. (1967). "Some computations for m {\displaystyle m} -dimensional partitions". Mathematical Proceedings of the Cambridge Philosophical Society. 63 (4): 1097–1100. doi:10.1017/S0305004100042171. /wiki/A._O._L._Atkin ↩
Stanley, Richard P. (1999). Enumerative Combinatorics, volume 2. Cambridge University Press. p. 402. doi:10.1017/CBO9780511609589. /wiki/Richard_P._Stanley ↩
Bratley, P.; McKay, J. K. S. (1967). "Algorithm 313: Multi-dimensional partition generator". Communications of the ACM. 10 (10): 666. doi:10.1145/363717.363783. /wiki/John_McKay_(mathematician) ↩
Knuth, Donald E. (1970). "A note on solid partitions". Mathematics of Computation. 24 (112): 955–961. doi:10.1090/S0025-5718-1970-0277401-7. /wiki/Donald_Knuth ↩
Mustonen, Ville; Rajesh, R. (2003). "Numerical Estimation of the Asymptotic Behaviour of Solid Partitions of an Integer". Journal of Physics A: Mathematical and General. 36 (24): 6651. arXiv:cond-mat/0303607. doi:10.1088/0305-4470/36/24/304. /wiki/ArXiv_(identifier) ↩
Balakrishnan, Srivatsan; Govindarajan, Suresh; Prabhakar, Naveen S. (2012). "On the asymptotics of higher-dimensional partitions". Journal of Physics A: Mathematical and General. 45: 055001. arXiv:1105.6231. doi:10.1088/1751-8113/45/5/055001. /wiki/ArXiv_(identifier) ↩
Destainville, Nicolas; Govindarajan, Suresh (2015). "Estimating the asymptotics of solid partitions". Journal of Statistical Physics. 158: 950–967. arXiv:1406.5605. doi:10.1007/s10955-014-1147-z. /wiki/ArXiv_(identifier) ↩
Bhatia, D. P.; Prasad, M. A.; Arora, D. (1997). "Asymptotic results for the number of multidimensional partitions of an integer and directed compact lattice animals". Journal of Physics A: Mathematical and General. 30 (7): 2281. doi:10.1088/0305-4470/30/7/010. /wiki/Doi_(identifier) ↩