If a group has trivial p′ core Op′(G), then it is defined to be p-constrained if the p-core Op(G) contains its centralizer, or in other words if its generalized Fitting subgroup is a p-group. More generally, if Op′(G) is non-trivial, then G is called p-constrained if G/Op′(G) is p-constrained.
All p-solvable groups are p-constrained.