Define Sing to be the class of all limit ordinals which are not regular. Global square states that there is a system ( C β ) β ∈ S i n g {\displaystyle (C_{\beta })_{\beta \in \mathrm {Sing} }} satisfying:
Jensen introduced also a local version of the principle.2 If κ {\displaystyle \kappa } is an uncountable cardinal, then ◻ κ {\displaystyle \Box _{\kappa }} asserts that there is a sequence ( C β ∣ β a limit point of κ + ) {\displaystyle (C_{\beta }\mid \beta {\text{ a limit point of }}\kappa ^{+})} satisfying:
Jensen proved that this principle holds in the constructible universe for any uncountable cardinal κ {\displaystyle \kappa } .
Cummings, James (2005), "Notes on Singular Cardinal Combinatorics", Notre Dame Journal of Formal Logic, 46 (3): 251–282, doi:10.1305/ndjfl/1125409326 Section 4. /wiki/Doi_(identifier) ↩
Jech, Thomas (2003), Set Theory: Third Millennium Edition, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-44085-7, p. 443. 978-3-540-44085-7 ↩