The complicated role CD80 plays in immune system regulation presents an opportunity for CD80 interactions to go rogue in various diseases. The up-regulation of CD80 has been linked to various autoimmune diseases, including multiple sclerosis, systemic lupus erythematosus and sepsis (which may partly be due to over-active T-cells), and CD80 has also been shown to help spread of HIV infection in the body. CD80 is also linked to various cancers, though some experience CD80 induced tolerance via possible regulatory T-cell interaction. Others experience inhibited growth and metastasis-related to CD80 up-regulation, further exemplifies the complicated role CD80 plays.
McKusick, V. A., & Converse, P. J. (2016, August 05). CD80 Antigen; CD80. Retrieved May 29, 2019
Peach RJ, Bajorath J, Naemura J, Leytze G, Greene J, Aruffo A, Linsley PS (September 1995). "Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28". The Journal of Biological Chemistry. 270 (36): 21181–7. doi:10.1074/jbc.270.36.21181. PMID 7545666. https://doi.org/10.1074%2Fjbc.270.36.21181
Mir MA (2015). "Introduction to Costimulation and Costimulatory Molecules". Developing Costimulatory Molecules for Immunotherapy of Diseases. Elsevier: 1–43. doi:10.1016/b978-0-12-802585-7.00001-7. ISBN 978-0-12-802585-7. 978-0-12-802585-7
Mir MA (2015). "Introduction to Costimulation and Costimulatory Molecules". Developing Costimulatory Molecules for Immunotherapy of Diseases. Elsevier: 1–43. doi:10.1016/b978-0-12-802585-7.00001-7. ISBN 978-0-12-802585-7. 978-0-12-802585-7
Mir MA (2015). "Introduction to Costimulation and Costimulatory Molecules". Developing Costimulatory Molecules for Immunotherapy of Diseases. Elsevier: 1–43. doi:10.1016/b978-0-12-802585-7.00001-7. ISBN 978-0-12-802585-7. 978-0-12-802585-7
"CD80 - T-lymphocyte activation antigen CD80 precursor - Homo sapiens (Human) - CD80 gene & protein". www.uniprot.org. Retrieved 2021-06-09. https://www.uniprot.org/uniprot/P33681
Mir MA (2015). "Introduction to Costimulation and Costimulatory Molecules". Developing Costimulatory Molecules for Immunotherapy of Diseases. Elsevier: 1–43. doi:10.1016/b978-0-12-802585-7.00001-7. ISBN 978-0-12-802585-7. 978-0-12-802585-7
"CD80 - T-lymphocyte activation antigen CD80 precursor - Homo sapiens (Human) - CD80 gene & protein". www.uniprot.org. Retrieved 2021-06-09. https://www.uniprot.org/uniprot/P33681
Mir MA (2015). "Introduction to Costimulation and Costimulatory Molecules". Developing Costimulatory Molecules for Immunotherapy of Diseases. Elsevier: 1–43. doi:10.1016/b978-0-12-802585-7.00001-7. ISBN 978-0-12-802585-7. 978-0-12-802585-7
"CD80 - T-lymphocyte activation antigen CD80 precursor - Homo sapiens (Human) - CD80 gene & protein". www.uniprot.org. Retrieved 2021-06-09. https://www.uniprot.org/uniprot/P33681
Abbas AK (2021). Cellular and molecular immunology. Elsevier. ISBN 978-0-323-75749-2. OCLC 1173994133. 978-0-323-75749-2
Mir MA (2015). "Introduction to Costimulation and Costimulatory Molecules". Developing Costimulatory Molecules for Immunotherapy of Diseases. Elsevier: 1–43. doi:10.1016/b978-0-12-802585-7.00001-7. ISBN 978-0-12-802585-7. 978-0-12-802585-7
Peach RJ, Bajorath J, Naemura J, Leytze G, Greene J, Aruffo A, Linsley PS (September 1995). "Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28". The Journal of Biological Chemistry. 270 (36): 21181–7. doi:10.1074/jbc.270.36.21181. PMID 7545666. https://doi.org/10.1074%2Fjbc.270.36.21181
Bhatia S, Edidin M, Almo SC, Nathenson SG (April 2006). "B7-1 and B7-2: similar costimulatory ligands with different biochemical, oligomeric and signaling properties". Immunology Letters. 104 (1–2): 70–5. doi:10.1016/j.imlet.2005.11.019. PMID 16413062. /wiki/Doi_(identifier)
Mir MA (2015). "Introduction to Costimulation and Costimulatory Molecules". Developing Costimulatory Molecules for Immunotherapy of Diseases. Elsevier: 1–43. doi:10.1016/b978-0-12-802585-7.00001-7. ISBN 978-0-12-802585-7. 978-0-12-802585-7
Bhatia S, Edidin M, Almo SC, Nathenson SG (April 2006). "B7-1 and B7-2: similar costimulatory ligands with different biochemical, oligomeric and signaling properties". Immunology Letters. 104 (1–2): 70–5. doi:10.1016/j.imlet.2005.11.019. PMID 16413062. /wiki/Doi_(identifier)
Bhatia S, Edidin M, Almo SC, Nathenson SG (October 2005). "Different cell surface oligomeric states of B7-1 and B7-2: implications for signaling". Proceedings of the National Academy of Sciences of the United States of America. 102 (43): 15569–74. Bibcode:2005PNAS..10215569B. doi:10.1073/pnas.0507257102. PMC 1266120. PMID 16221763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1266120
Ikemizu S, Gilbert RJ, Fennelly JA, Collins AV, Harlos K, Jones EY, et al. (January 2000). "Structure and dimerization of a soluble form of B7-1". Immunity. 12 (1): 51–60. doi:10.1016/s1074-7613(00)80158-2. PMID 10661405. https://doi.org/10.1016%2Fs1074-7613%2800%2980158-2
Mir MA (2015). "Introduction to Costimulation and Costimulatory Molecules". Developing Costimulatory Molecules for Immunotherapy of Diseases. Elsevier: 1–43. doi:10.1016/b978-0-12-802585-7.00001-7. ISBN 978-0-12-802585-7. 978-0-12-802585-7
Mir MA (2015). "Introduction to Costimulation and Costimulatory Molecules". Developing Costimulatory Molecules for Immunotherapy of Diseases. Elsevier: 1–43. doi:10.1016/b978-0-12-802585-7.00001-7. ISBN 978-0-12-802585-7. 978-0-12-802585-7
Ikemizu S, Gilbert RJ, Fennelly JA, Collins AV, Harlos K, Jones EY, et al. (January 2000). "Structure and dimerization of a soluble form of B7-1". Immunity. 12 (1): 51–60. doi:10.1016/s1074-7613(00)80158-2. PMID 10661405. https://doi.org/10.1016%2Fs1074-7613%2800%2980158-2
Peach RJ, Bajorath J, Naemura J, Leytze G, Greene J, Aruffo A, Linsley PS (September 1995). "Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28". The Journal of Biological Chemistry. 270 (36): 21181–7. doi:10.1074/jbc.270.36.21181. PMID 7545666. https://doi.org/10.1074%2Fjbc.270.36.21181
Mir MA (2015). "Introduction to Costimulation and Costimulatory Molecules". Developing Costimulatory Molecules for Immunotherapy of Diseases. Elsevier: 1–43. doi:10.1016/b978-0-12-802585-7.00001-7. ISBN 978-0-12-802585-7. 978-0-12-802585-7
Owen JA, Punt J, Stranford SA, Jones PP, Kuby J (2013). Kuby Immunology (7th ed.). New York: W.H. Freeman and Company.
Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K (March 2020). "Targeting B7-1 in immunotherapy". Medicinal Research Reviews. 40 (2): 654–682. doi:10.1002/med.21632. PMID 31448437. S2CID 201748060. /wiki/Doi_(identifier)
Peach RJ, Bajorath J, Naemura J, Leytze G, Greene J, Aruffo A, Linsley PS (September 1995). "Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28". The Journal of Biological Chemistry. 270 (36): 21181–7. doi:10.1074/jbc.270.36.21181. PMID 7545666. https://doi.org/10.1074%2Fjbc.270.36.21181
Owen JA, Punt J, Stranford SA, Jones PP, Kuby J (2013). Kuby Immunology (7th ed.). New York: W.H. Freeman and Company.
Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K (March 2020). "Targeting B7-1 in immunotherapy". Medicinal Research Reviews. 40 (2): 654–682. doi:10.1002/med.21632. PMID 31448437. S2CID 201748060. /wiki/Doi_(identifier)
Mir MA (2015). "Introduction to Costimulation and Costimulatory Molecules". Developing Costimulatory Molecules for Immunotherapy of Diseases. Elsevier: 1–43. doi:10.1016/b978-0-12-802585-7.00001-7. ISBN 978-0-12-802585-7. 978-0-12-802585-7
Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K (March 2020). "Targeting B7-1 in immunotherapy". Medicinal Research Reviews. 40 (2): 654–682. doi:10.1002/med.21632. PMID 31448437. S2CID 201748060. /wiki/Doi_(identifier)
van der Merwe PA, Bodian DL, Daenke S, Linsley P, Davis SJ (February 1997). "CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics". The Journal of Experimental Medicine. 185 (3): 393–403. doi:10.1084/jem.185.3.393. PMC 2196039. PMID 9053440. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196039
Bhatia S, Edidin M, Almo SC, Nathenson SG (October 2005). "Different cell surface oligomeric states of B7-1 and B7-2: implications for signaling". Proceedings of the National Academy of Sciences of the United States of America. 102 (43): 15569–74. Bibcode:2005PNAS..10215569B. doi:10.1073/pnas.0507257102. PMC 1266120. PMID 16221763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1266120
Bhatia S, Edidin M, Almo SC, Nathenson SG (October 2005). "Different cell surface oligomeric states of B7-1 and B7-2: implications for signaling". Proceedings of the National Academy of Sciences of the United States of America. 102 (43): 15569–74. Bibcode:2005PNAS..10215569B. doi:10.1073/pnas.0507257102. PMC 1266120. PMID 16221763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1266120
Owen JA, Punt J, Stranford SA, Jones PP, Kuby J (2013). Kuby Immunology (7th ed.). New York: W.H. Freeman and Company.
Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM (June 2004). "The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation". The Journal of Experimental Medicine. 199 (12): 1607–18. doi:10.1084/jem.20040317. PMC 2212806. PMID 15197224. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212806
Mir MA (2015). "Introduction to Costimulation and Costimulatory Molecules". Developing Costimulatory Molecules for Immunotherapy of Diseases. Elsevier: 1–43. doi:10.1016/b978-0-12-802585-7.00001-7. ISBN 978-0-12-802585-7. 978-0-12-802585-7
Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K (March 2020). "Targeting B7-1 in immunotherapy". Medicinal Research Reviews. 40 (2): 654–682. doi:10.1002/med.21632. PMID 31448437. S2CID 201748060. /wiki/Doi_(identifier)
Snanoudj R, Frangié C, Deroure B, François H, Créput C, Beaudreuil S, et al. (September 2007). "The blockade of T-cell co-stimulation as a therapeutic stratagem for immunosuppression: Focus on belatacept". Biologics: Targets and Therapy. 1 (3): 203–13. PMC 2721321. PMID 19707331. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721321
Zheng Y, Manzotti CN, Liu M, Burke F, Mead KI, Sansom DM (March 2004). "CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells". Journal of Immunology. 172 (5): 2778–84. doi:10.4049/jimmunol.172.5.2778. PMID 14978077. https://doi.org/10.4049%2Fjimmunol.172.5.2778
Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, Thompson CB (July 1995). "CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL". Immunity. 3 (1): 87–98. doi:10.1016/1074-7613(95)90161-2. PMID 7621080. https://doi.org/10.1016%2F1074-7613%2895%2990161-2
Kovalev GI, Franklin DS, Coffield VM, Xiong Y, Su L (September 2001). "An important role of CDK inhibitor p18(INK4c) in modulating antigen receptor-mediated T cell proliferation". Journal of Immunology. 167 (6): 3285–92. doi:10.4049/jimmunol.167.6.3285. PMC 4435948. PMID 11544316. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435948
Orabona C, Grohmann U, Belladonna ML, Fallarino F, Vacca C, Bianchi R, et al. (November 2004). "CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86". Nature Immunology. 5 (11): 1134–42. doi:10.1038/ni1124. PMID 15467723. S2CID 6080497. /wiki/Doi_(identifier)
Nolan A, Kobayashi H, Naveed B, Kelly A, Hoshino Y, Hoshino S, et al. (August 2009). "Differential role for CD80 and CD86 in the regulation of the innate immune response in murine polymicrobial sepsis". PLOS ONE. 4 (8): e6600. Bibcode:2009PLoSO...4.6600N. doi:10.1371/journal.pone.0006600. PMC 2719911. PMID 19672303. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719911
Nolan A, Kobayashi H, Naveed B, Kelly A, Hoshino Y, Hoshino S, et al. (August 2009). "Differential role for CD80 and CD86 in the regulation of the innate immune response in murine polymicrobial sepsis". PLOS ONE. 4 (8): e6600. Bibcode:2009PLoSO...4.6600N. doi:10.1371/journal.pone.0006600. PMC 2719911. PMID 19672303. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719911
Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K (March 2020). "Targeting B7-1 in immunotherapy". Medicinal Research Reviews. 40 (2): 654–682. doi:10.1002/med.21632. PMID 31448437. S2CID 201748060. /wiki/Doi_(identifier)
Nolan A, Kobayashi H, Naveed B, Kelly A, Hoshino Y, Hoshino S, et al. (August 2009). "Differential role for CD80 and CD86 in the regulation of the innate immune response in murine polymicrobial sepsis". PLOS ONE. 4 (8): e6600. Bibcode:2009PLoSO...4.6600N. doi:10.1371/journal.pone.0006600. PMC 2719911. PMID 19672303. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719911
Zheng Y, Manzotti CN, Liu M, Burke F, Mead KI, Sansom DM (March 2004). "CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells". Journal of Immunology. 172 (5): 2778–84. doi:10.4049/jimmunol.172.5.2778. PMID 14978077. https://doi.org/10.4049%2Fjimmunol.172.5.2778
Chambers BJ, Salcedo M, Ljunggren HG (October 1996). "Triggering of natural killer cells by the costimulatory molecule CD80 (B7-1)". Immunity. 5 (4): 311–7. doi:10.1016/S1074-7613(00)80257-5. PMID 8885864. https://doi.org/10.1016%2FS1074-7613%2800%2980257-5
Sabzevari H, Kantor J, Jaigirdar A, Tagaya Y, Naramura M, Hodge J, Bernon J, Schlom J (February 2001). "Acquisition of CD80 (B7-1) by T cells". Journal of Immunology. 166 (4): 2505–13. doi:10.4049/jimmunol.166.4.2505. PMID 11160311. https://doi.org/10.4049%2Fjimmunol.166.4.2505
Rau FC, Dieter J, Luo Z, Priest SO, Baumgarth N (December 2009). "B7-1/2 (CD80/CD86) direct signaling to B cells enhances IgG secretion". Journal of Immunology. 183 (12): 7661–71. doi:10.4049/jimmunol.0803783. PMC 2795108. PMID 19933871. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795108
Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K (March 2020). "Targeting B7-1 in immunotherapy". Medicinal Research Reviews. 40 (2): 654–682. doi:10.1002/med.21632. PMID 31448437. S2CID 201748060. /wiki/Doi_(identifier)
Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (July 2007). "Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses". Immunity. 27 (1): 111–22. doi:10.1016/j.immuni.2007.05.016. PMC 2707944. PMID 17629517. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707944
Windhagen A, Newcombe J, Dangond F, Strand C, Woodroofe MN, Cuzner ML, Hafler DA (December 1995). "Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions". The Journal of Experimental Medicine. 182 (6): 1985–96. doi:10.1084/jem.182.6.1985. PMC 2192240. PMID 7500044. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192240
Wong CK, Lit LC, Tam LS, Li EK, Lam CW (August 2005). "Aberrant production of soluble costimulatory molecules CTLA-4, CD28, CD80 and CD86 in patients with systemic lupus erythematosus". Rheumatology. 44 (8). Oxford, England: 989–94. doi:10.1093/rheumatology/keh663. PMID 15870153. https://doi.org/10.1093%2Frheumatology%2Fkeh663
Nolan A, Weiden M, Kelly A, Hoshino Y, Hoshino S, Mehta N, Gold JA (February 2008). "CD40 and CD80/86 act synergistically to regulate inflammation and mortality in polymicrobial sepsis". American Journal of Respiratory and Critical Care Medicine. 177 (3): 301–8. doi:10.1164/rccm.200703-515OC. PMC 2218847. PMID 17989345. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2218847
Pinchuk LM, Polacino PS, Agy MB, Klaus SJ, Clark EA (July 1994). "The role of CD40 and CD80 accessory cell molecules in dendritic cell-dependent HIV-1 infection". Immunity. 1 (4): 317–25. doi:10.1016/1074-7613(94)90083-3. PMID 7534204. /wiki/Doi_(identifier)
Yang R, Cai Z, Zhang Y, Yutzy WH, Roby KF, Roden RB (July 2006). "CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells". Cancer Research. 66 (13): 6807–15. doi:10.1158/0008-5472.CAN-05-3755. PMID 16818658. https://doi.org/10.1158%2F0008-5472.CAN-05-3755
Imasuen I, Bozeman E, He S, Patel J, Selvaraj P (May 2013). "Increased B7-1 (CD80) expression reduces overall tumorigenicity and metastatic potential of the murine pancreatic cancer cell model Pan02 (P2085)". The Journal of Immunology. 190 (1 Supplement): 53.43. doi:10.4049/jimmunol.190.Supp.53.43. S2CID 82772085. http://www.jimmunol.org/content/190/1_Supplement/53.43.short
Chambers BJ, Salcedo M, Ljunggren HG (October 1996). "Triggering of natural killer cells by the costimulatory molecule CD80 (B7-1)". Immunity. 5 (4): 311–7. doi:10.1016/S1074-7613(00)80257-5. PMID 8885864. https://doi.org/10.1016%2FS1074-7613%2800%2980257-5