F.M. Arscott, Periodic Differential Equations, Pergamon Press (1964).
H.J.W. Müller, Asymptotische Entwicklungen von Sphäroidfunktionen und ihre Verwandtschaft mit Kugelfunktionen, Z. angew. Math. Mech. 44 (1964) 371-374, Über asymptotische Entwicklungen von Sphäroidfunktionen, Z. angew. Math. Mech. 45 (1965) 29-36.
. M. Abramowitz and I. Stegun. Handbook of Mathematical Functions pp. 751-759 (Dover, New York, 1972) http://www.math.sfu.ca/~cbm/aands/page_751.htm
C. Flammer. Spheroidal Wave Functions Stanford University Press, Stanford, CA, 1957
C. Niven on the conduction of heat in ellipsoids of revolution. Philosophical transactions of the Royal Society of London, 171 p. 117 (1880) http://gallica.bnf.fr/ark:/12148/bpt6k55976x.image.f135.tableDesMatieres.langEN
M. J. O. Strutt. Lamesche, Mathieusche and Verdandte Funktionen in Physik und Technik Ergebn. Math. u. Grenzeb, 1, pp. 199-323, 1932
J. A. Stratton, P. M. Morse, J. L. Chu, and F. J. Corbató. Spheroidal Wave Functions Wiley, New York, 1956
J. Meixner and F. W. Schafke. Mathieusche Funktionen und Sphäroidfunktionen Springer-Verlag, Berlin, 1954
C. Flammer. Spheroidal Wave Functions Stanford University Press, Stanford, CA, 1957
C. Flammer. Spheroidal Wave Functions Stanford University Press, Stanford, CA, 1957
A. L. Van Buren, R. V. Baier, and S Hanish A Fortran computer program for calculating the oblate spheroidal radial functions of the first and second kind and their first derivatives. (1970) http://torpedo.nrl.navy.mil/tu/ps/doc.html?dsn=3050792
B. J. King and A. L. Van Buren A Fortran computer program for calculating the prolate and oblate spheroidal angle functions of the first kind and their first and second derivatives. (1970) http://torpedo.nrl.navy.mil/tu/ps/doc.html?dsn=124589
R. V. Baier, A. L. Van Buren, S. Hanish, B. J. King - Spheroidal wave functions: their use and evaluation The Journal of the Acoustical Society of America, 48, pp. 102–102 (1970) https://dx.doi.org/10.1121/1.1974857
S. Zhang and J. Jin. Computation of Special Functions, Wiley, New York, 1996
W. J. Thomson Spheroidal Wave functions Archived 2010-02-16 at the Wayback Machine Computing in Science & Engineering p. 84, May–June 1999 http://www.ece.nus.edu.sg/stfpage/elelilw/Software/00764220.pdf
A. L. Van Buren and J. E. Boisvert. Accurate calculation of prolate spheroidal radial functions of the first kind and their first derivatives, Quarterly of Applied Mathematics 60, pp. 589-599, 2002
A. L. Van Buren and J. E. Boisvert. Improved calculation of prolate spheroidal radial functions of the second kind and their first derivatives, Quarterly of Applied Mathematics 62, pp. 493-507, 2004
C. Flammer. Spheroidal Wave Functions Stanford University Press, Stanford, CA, 1957
S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King Tables of radial spheroidal wave functions, volume 4, oblate, m = 0 (1970) http://torpedo.nrl.navy.mil/tu/ps/doc.html?dsn=5502362
S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King Tables of radial spheroidal wave functions, volume 5, oblate, m = 1 (1970) http://torpedo.nrl.navy.mil/tu/ps/doc.html?dsn=124633
S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King Tables of radial spheroidal wave functions, volume 6, oblate, m = 2 (1970) http://torpedo.nrl.navy.mil/tu/ps/doc.html?dsn=124634
A. L. Van Buren, B. J. King, R. V. Baier, and S. Hanish. Tables of Angular Spheroidal Wave Functions, vol. 2, oblate, m = 0, Naval Research Lab. Publication, U. S. Govt. Printing Office, 1975
H.J.W. Müller, Asymptotic Expansions of Oblate Spheroidal Wave Functions and their Characteristic Numbers, J. reine angew. Math. 211 (1962) 33 - 47
H.J.W. Müller, Asymptotic Expansions of Prolate Speroidal Wave Functions and their Characteristic Numbers, J. reine angw. Math. 212 (1963) 26 - 48