Geometric hashing is a method used for object recognition. Let’s say that we want to check if a model image can be seen in an input image. This can be accomplished with geometric hashing. The method could be used to recognize one of the multiple objects in a base, in this case the hash table should store not only the pose information but also the index of object model in the base.
For simplicity, this example will not use too many point features and assume that their descriptors are given by their coordinates only (in practice local descriptors such as SIFT could be used for indexing).
Hash Table:
Most hash tables cannot have identical keys mapped to different values. So in real life one won’t encode basis keys (1.0, 0.0) and (-1.0, 0.0) in a hash table.
It seems that this method is only capable of handling scaling, translation, and rotation. However, the input image may contain the object in mirror transform. Therefore, geometric hashing should be able to find the object, too. There are two ways to detect mirrored objects.
Similar to the example above, hashing applies to higher-dimensional data. For three-dimensional data points, three points are also needed for the basis. The first two points define the x-axis, and the third point defines the y-axis (with the first point). The z-axis is perpendicular to the created axis using the right-hand rule. Notice that the order of the points affects the resulting basis
A.S. Mian, M. Bennamoun, and R. Owens, Three-dimensional model-based object recognition and segmentation in cluttered scenes., IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, Oct. 2006, pp. 1584-601. https://www.ncbi.nlm.nih.gov/pubmed/16986541 ↩
Moll, Mark; Bryant, Drew H.; Kavraki, Lydia E. (2010-11-11). "The LabelHash algorithm for substructure matching". BMC Bioinformatics. 11: 555. doi:10.1186/1471-2105-11-555. ISSN 1471-2105. PMC 2996407. PMID 21070651. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996407 ↩
Nussinov, R.; Wolfson, H. J. (1991-12-01). "Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques". Proceedings of the National Academy of Sciences of the United States of America. 88 (23): 10495–10499. Bibcode:1991PNAS...8810495N. doi:10.1073/pnas.88.23.10495. ISSN 0027-8424. PMC 52955. PMID 1961713. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC52955 ↩