The definition of LCE is often challenged in regard to its primary purpose, but the consensus purpose of LCE is to evaluate and contribute to the improvement of environmental, health, and overall sustainability services and consequences of products at all life cycle stages.
The first step in completing LCA or LCE is determining the appropriate sustainability thresholds to use as environmental targets for the product system. The proposed Lyngby framework for LCE is a combined top-down and bottom-up approach for LCE that uses targets based on planetary boundaries. Planetary boundaries can be used to establish limits for the earth's carrying capacity, defining upper thresholds for the environmental system.
LCE is most commonly used as a part of green building rating systems or individual parties aiming to assess environmental or sustainability consequences of specific building projects or products. Stakeholders that want to develop more sustainable operations on a life-cycle level or assess their products from a life-cycle perspective use LCE to assess and improve operations to maximize efficiency and meet desired environmental or economic goals. Minimizing adverse environmental consequences and optimizing resource use are two central concepts to the application of LCE.
Key themes in LCE are economic, social, environmental and technological. These themes are interlinking and can be influenced by life cycle engineering.
Life cycle engineering is an assessment methodology and practice faced with increasing demand in the architectural, construction, and design industries. The shift toward "green building" or sustainable construction has increased the need for LCE in the design, construction, operation, and demolition of buildings. Newly realized environmental and economic benefits of sustainable building practices are determined and made accessible through LCE. LCE provides value to businesses by revealing and quantifying the benefits of sustainable construction with regard to environmental impact, energy reduction, economic savings, and commercial or social attractiveness. The costs LCE or of conducting life-cycle assessment (LCA) and life-cycle cost analysis (LCCA) are outweighed and justified by the benefits of such assessments, increasing the integration of LCE within sustainable construction practices.
Specific demand for LCE in sustainable construction practices can be attributed to green building rating systems such as Leadership in Energy and Environmental Design (LEED) – developed by the U.S. Green Building Council – and Green Globes – developed by the Green Building Initiative. Green building rating systems have supported and encouraged the use of LCE and LCA as methods to improve the standards and requirements of rating systems, while also advancing industry-wide standards for integrated building sustainability considerations.
Hauschild, M. (2018). Life cycle assessment: theory and practice. Published in Switzerland by Springer International Publishing AG, 2018.
Alting, D.L., & Jøgensen, D.J. (1993). The life cycle concept as a basis for sustainable industrial production. CIRP Annals – Manufacturing Technology, vol. 42, pp. 163-167, 1993.
Penciuc, D. et al. (2015). Product life cycle management approach for integration of engineering design and life cycle engineering. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2016), 30, 379–389.
Kara, S., Hauschild, M., Herrmann, C. (2018). Target-driven life cycle engineering: staying within the planetary boundaries. 25th CIRP Life cycle engineering conference, 30 April – 2 May 2018, Copenhagen, Denmark.
ISO 14040 – International Organization for Standardization, Environmental Management: Life Cycle Assessment: Principles and Framework, vol. 14040: ISO, 2006.
Hellweg, S., Mila i Canals, L. (2014). "Emerging approaches, challenges and opportunities in life cycle assessment." Science, vol. 344, pp. 1109–1113, 2014.
Hauschild, M. (2018). Life cycle assessment: theory and practice. Published in Switzerland by Springer International Publishing AG, 2018.
Jeswiet, Jack (2014), "Life Cycle Engineering", CIRP Encyclopedia of Production Engineering, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 757–758, doi:10.1007/978-3-642-20617-7_6609, ISBN 978-3-642-20616-0, S2CID 220277773, retrieved 16 December 2022 978-3-642-20616-0
Laurent, Alexis; Molin, Christine; Owsianiak, Mikołaj; Fantke, Peter; Dewulf, Wim; Herrmann, Christoph; Kara, Sami; Hauschild, Michael (1 September 2019). "The role of life cycle engineering (LCE) in meeting the sustainable development goals – report from a consultation of LCE experts". Journal of Cleaner Production. 230: 378–382. Bibcode:2019JCPro.230..378L. doi:10.1016/j.jclepro.2019.05.129. ISSN 0959-6526. S2CID 182062889. /wiki/Bibcode_(identifier)
Steffen, W., Richardson, K., Rockström, S., Cornell, I., Fetzer, E., Bennett, M. et al. (2015). "Planetary boundaries: guiding human development on a changing planet." Science, vol. 347, p. 1259855, 2015.
Kara, S., Hauschild, M., Herrmann, C. (2018). Target-driven life cycle engineering: staying within the planetary boundaries. 25th CIRP Life cycle engineering conference, 30 April – 2 May 2018, Copenhagen, Denmark.
Kaluza, A., Gellrich, S., Cerdas, F., Thiede, S., Herrmann, C. (2018). Life cycle engineering based on visual analytics. 25th CIRP Life cycle engineering conference, 30 April – 2 May 2018, Copenhagen, Denmark.
Juraschek et al. (2018). Exploring the potentials of mixed reality for life cycle engineering. 25th CIRP Life cycle engineering conference, 30 April – 2 May 2018, Copenhagen, Denmark.
Penciuc, D. et al. (2015). Product life cycle management approach for integration of engineering design and life cycle engineering. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2016), 30, 379–389.
Ramanujan, D. Visual Analytics tools for sustainable lifecycle design: Current Status, Challenges, and Future Opportunities. (2017).
Cooper, Joyce; Fava, Jim; Baer, Steven (February 2008). "Life Cycle Assessments of Buildings in North America: Demand and Supply". Journal of Industrial Ecology. 12 (1): 7–9. doi:10.1111/j.1530-9290.2008.00003.x. S2CID 152949585. /wiki/Doi_(identifier)
Hauschild, M. (2018). Life cycle assessment: theory and practice. Published in Switzerland by Springer International Publishing AG, 2018.
Laurent, Alexis; Molin, Christine; Owsianiak, Mikołaj; Fantke, Peter; Dewulf, Wim; Herrmann, Christoph; Kara, Sami; Hauschild, Michael (1 September 2019). "The role of life cycle engineering (LCE) in meeting the sustainable development goals – report from a consultation of LCE experts". Journal of Cleaner Production. 230: 378–382. Bibcode:2019JCPro.230..378L. doi:10.1016/j.jclepro.2019.05.129. ISSN 0959-6526. S2CID 182062889. /wiki/Bibcode_(identifier)
Laurent, Alexis; Molin, Christine; Owsianiak, Mikołaj; Fantke, Peter; Dewulf, Wim; Herrmann, Christoph; Kara, Sami; Hauschild, Michael (1 September 2019). "The role of life cycle engineering (LCE) in meeting the sustainable development goals – report from a consultation of LCE experts". Journal of Cleaner Production. 230: 378–382. Bibcode:2019JCPro.230..378L. doi:10.1016/j.jclepro.2019.05.129. ISSN 0959-6526. S2CID 182062889. /wiki/Bibcode_(identifier)
Cooper, Joyce; Fava, Jim; Baer, Steven (February 2008). "Life Cycle Assessments of Buildings in North America: Demand and Supply". Journal of Industrial Ecology. 12 (1): 7–9. doi:10.1111/j.1530-9290.2008.00003.x. S2CID 152949585. /wiki/Doi_(identifier)
Cooper, Joyce; Fava, Jim; Baer, Steven (February 2008). "Life Cycle Assessments of Buildings in North America: Demand and Supply". Journal of Industrial Ecology. 12 (1): 7–9. doi:10.1111/j.1530-9290.2008.00003.x. S2CID 152949585. /wiki/Doi_(identifier)
Fava, Jim; Baer, Steven; Cooper, Joyce (August 2009). "Increasing Demands for Life Cycle Assessments in North America". Journal of Industrial Ecology. 13 (4): 491–494. Bibcode:2009JInEc..13..491F. doi:10.1111/j.1530-9290.2009.00150.x. S2CID 153411395. /wiki/Bibcode_(identifier)