The first certified subunit vaccine by clinical trials on humans is the hepatitis B vaccine, containing the surface antigens of the hepatitis B virus itself from infected patients and adjusted by newly developed technology aiming to enhance the vaccine safety and eliminate possible contamination through individuals plasma.
Subunit vaccines contain fragments of the pathogen, such as protein or polysaccharide, whose combinations are carefully selected to induce a strong and effective immune response. Because the immune system interacts with the pathogen in a limited way, the risk of side effects is minimal.
An effective vaccine would elicit the immune response to the antigens and form immunological memory that allows quick recognition of the pathogens and quick response to future infections.
It has been shown in a 2014 systematic quantitative review that the bivalent HPV vaccine (Cervarix) is associated with pain (OR 3.29; 95% CI: 3.00–3.60), swelling (OR 3.14; 95% CI: 2.79–3.53) and redness (OR 2.41; 95% CI: 2.17–2.68) being the most frequently reported adverse effects. For Gardasil, the most frequently reported events were pain (OR 2.88; 95% CI: 2.42–3.43) and swelling (OR 2.65; 95% CI: 2.0–3.44).
Gardasil was discontinued in the U.S. on May 8, 2017, after the introduction of Gardasil 9 and Cervarix was also voluntarily withdrawn in the U.S. on August 8, 2016.
The middle of the 20th century marked the golden age of vaccine science. Rapid technological advancements during this period of time enabled scientists to cultivate cell culture under controlled environments in laboratories, subsequently giving rise to the production of vaccines against poliomyelitis, measles and various communicable diseases. Conjugated vaccines were also developed using immunologic markers including capsular polysaccharide and proteins. Creation of products targeting common illnesses successfully lowered infection-related mortality and reduced public healthcare burden.
Subunit vaccines are not only considered effective for SARS-COV-2, but also as candidates for evolving immunizations against malaria, tetanus, salmonella enterica, and other diseases.
Research has been conducted to explore the possibility of developing a heterologous SARS-CoV receptor-binding domain (RBD) recombinant protein as a human vaccine against COVID-19. The theory is supported by evidence that convalescent serum from SARS-CoV patients have the ability to neutralise SARS-CoV-2 (corresponding virus for COVID-19) and that amino acid similarity between SARS-CoV and SARS-CoV-2 spike and RBD protein is high (82%).
"Module 2 - Subunit vaccines". WHO Vaccine Safety Basics e-learning course. Archived from the original on 2021-08-08. https://vaccine-safety-training.org/subunit-vaccines.html
"What are protein subunit vaccines and how could they be used against COVID-19?". GAVI. Archived from the original on 2021-08-17. https://www.gavi.org/vaccineswork/what-are-protein-subunit-vaccines-and-how-could-they-be-used-against-covid-19
Francis MJ (March 2018). "Recent Advances in Vaccine Technologies". The Veterinary Clinics of North America. Small Animal Practice. Vaccines and Immunology. 48 (2): 231–241. doi:10.1016/j.cvsm.2017.10.002. PMC 7132473. PMID 29217317. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132473
"Module 2 - Subunit vaccines". WHO Vaccine Safety Basics e-learning course. Archived from the original on 2021-08-08. https://vaccine-safety-training.org/subunit-vaccines.html
"What are protein subunit vaccines and how could they be used against COVID-19?". GAVI. Archived from the original on 2021-08-17. https://www.gavi.org/vaccineswork/what-are-protein-subunit-vaccines-and-how-could-they-be-used-against-covid-19
Lidder P, Sonnino A (2012). Biotechnologies for the Management of Genetic Resources for Food and Agriculture. Advances in Genetics. Vol. 78. Elsevier. pp. 1–167. doi:10.1016/B978-0-12-394394-1.00001-8. ISBN 9780123943941. PMID 22980921. 9780123943941
"Module 2 - Subunit vaccines". WHO Vaccine Safety Basics e-learning course. Archived from the original on 2021-08-08. https://vaccine-safety-training.org/subunit-vaccines.html
"What are protein subunit vaccines and how could they be used against COVID-19?". GAVI. Archived from the original on 2021-08-17. https://www.gavi.org/vaccineswork/what-are-protein-subunit-vaccines-and-how-could-they-be-used-against-covid-19
"What are protein subunit vaccines and how could they be used against COVID-19?". GAVI. Archived from the original on 2021-08-17. https://www.gavi.org/vaccineswork/what-are-protein-subunit-vaccines-and-how-could-they-be-used-against-covid-19
"Gardasil 9 (Human Papillomavirus 9-valent Vaccine, Recombinant)". Food and Drug Administration. Archived from the original on 2023-08-29. Retrieved 2023-04-02. https://www.fda.gov/media/90064/download
"Flublok Quadrivalent (Influenza Vaccine)". Food and Drug Administration. Archived from the original on 2023-03-26. Retrieved 2023-04-02. https://www.fda.gov/media/123144/download
"Shingrix (Zoster Vaccine Recombinant, Adjuvanted)". Food and Drug Administration. Archived from the original on 2023-07-02. Retrieved 2023-04-02. https://www.fda.gov/media/108597/download
"Nuvaxovid dispersion for injection,COVID-19 Vaccine (recombinant, adjuvanted)" (PDF). Archived (PDF) from the original on 2022-08-17. Retrieved 2023-04-02. https://www.ema.europa.eu/en/documents/product-information/nuvaxovid-epar-product-information_en.pdf
Mascola JR, Fauci AS (February 2020). "Novel vaccine technologies for the 21st century". Nature Reviews. Immunology. 20 (2): 87–88. doi:10.1038/s41577-019-0243-3. PMC 7222935. PMID 31712767. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222935
Tripathi NK, Shrivastava A (2018-08-23). "Recent Developments in Recombinant Protein-Based Dengue Vaccines". Frontiers in Immunology. 9: 1919. doi:10.3389/fimmu.2018.01919. PMC 6115509. PMID 30190720. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115509
Cuffari B (2022). "What is a Subunit Vaccine?". News medical lifesciences. Archived from the original on 2022-05-25. Retrieved 2023-01-12. https://www.news-medical.net/health/What-is-a-Subunit-Vaccine.aspx
"What are protein subunit vaccines and how could they be used against COVID-19?". GAVI. Archived from the original on 2021-08-17. https://www.gavi.org/vaccineswork/what-are-protein-subunit-vaccines-and-how-could-they-be-used-against-covid-19
"Module 2 - Subunit vaccines". WHO Vaccine Safety Basics e-learning course. Archived from the original on 2021-08-08. https://vaccine-safety-training.org/subunit-vaccines.html
"What are protein subunit vaccines and how could they be used against COVID-19?". GAVI. Archived from the original on 2021-08-17. https://www.gavi.org/vaccineswork/what-are-protein-subunit-vaccines-and-how-could-they-be-used-against-covid-19
"Module 2 - Subunit vaccines". WHO Vaccine Safety Basics e-learning course. Archived from the original on 2021-08-08. https://vaccine-safety-training.org/subunit-vaccines.html
"What are protein subunit vaccines and how could they be used against COVID-19?". GAVI. Archived from the original on 2021-08-17. https://www.gavi.org/vaccineswork/what-are-protein-subunit-vaccines-and-how-could-they-be-used-against-covid-19
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). The Shape and Structure of Proteins. New York: Garland Science. Archived from the original on 26 March 2020. Retrieved 15 April 2022. https://www.ncbi.nlm.nih.gov/books/NBK26830/
Stoker HS (1 January 2015). General, Organic, and Biological Chemistry (7th ed.). Boston, MA: Cengage Learning. pp. 709–710. ISBN 978-1-305-68618-2. Archived from the original on 5 September 2023. Retrieved 15 April 2022. 978-1-305-68618-2
Smith MB (27 April 2020). Biochemistry: An Organic Chemistry Approach. Boca Raton: CRC Press. pp. 269–270. ISBN 978-1-351-25807-4. Archived from the original on 5 September 2023. Retrieved 15 April 2022. 978-1-351-25807-4
Vijayan M, Yathindra N, Kolaskar AS (1999). "Multi-protein assemblies with point group symmetry". In Vijayan M, Yathindra N, Kolaskar AS (eds.). Perspectives in Structural Biology: A Volume in Honour of G.N. Ramachandran. Hyderabad, India: Universities Press. pp. 449–466. ISBN 978-81-7371-254-8. Archived from the original on 8 November 2023. Retrieved 15 April 2022. 978-81-7371-254-8
Plummer EM, Manchester M (2011). "Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design". Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. 3 (2): 174–196. doi:10.1002/wnan.119. PMC 7169818. PMID 20872839. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169818
Hotez PJ, Bottazzi ME (January 2022). "Whole Inactivated Virus and Protein-Based COVID-19 Vaccines". Annual Review of Medicine. 73 (1): 55–64. doi:10.1146/annurev-med-042420-113212. PMID 34637324. S2CID 238747462. https://doi.org/10.1146%2Fannurev-med-042420-113212
Plummer EM, Manchester M (2011). "Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design". Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. 3 (2): 174–196. doi:10.1002/wnan.119. PMC 7169818. PMID 20872839. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169818
Noad R, Roy P (September 2003). "Virus-like particles as immunogens". Trends in Microbiology. 11 (9): 438–444. doi:10.1016/S0966-842X(03)00208-7. PMID 13678860. /wiki/Doi_(identifier)
Plummer EM, Manchester M (2011). "Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design". Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. 3 (2): 174–196. doi:10.1002/wnan.119. PMC 7169818. PMID 20872839. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169818
Wang M, Jiang S, Wang Y (April 2016). "Recent advances in the production of recombinant subunit vaccines in Pichia pastoris". Bioengineered. 7 (3): 155–165. doi:10.1080/21655979.2016.1191707. PMC 4927204. PMID 27246656. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927204
Hotez PJ, Bottazzi ME (January 2022). "Whole Inactivated Virus and Protein-Based COVID-19 Vaccines". Annual Review of Medicine. 73 (1): 55–64. doi:10.1146/annurev-med-042420-113212. PMID 34637324. S2CID 238747462. https://doi.org/10.1146%2Fannurev-med-042420-113212
Plummer EM, Manchester M (2011). "Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design". Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. 3 (2): 174–196. doi:10.1002/wnan.119. PMC 7169818. PMID 20872839. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169818
Wang M, Jiang S, Wang Y (April 2016). "Recent advances in the production of recombinant subunit vaccines in Pichia pastoris". Bioengineered. 7 (3): 155–165. doi:10.1080/21655979.2016.1191707. PMC 4927204. PMID 27246656. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927204
Bill RM (March 2015). "Recombinant protein subunit vaccine synthesis in microbes: a role for yeast?". The Journal of Pharmacy and Pharmacology. 67 (3): 319–328. doi:10.1111/jphp.12353. PMID 25556638. S2CID 22339760. https://doi.org/10.1111%2Fjphp.12353
Hotez PJ, Bottazzi ME (January 2022). "Whole Inactivated Virus and Protein-Based COVID-19 Vaccines". Annual Review of Medicine. 73 (1): 55–64. doi:10.1146/annurev-med-042420-113212. PMID 34637324. S2CID 238747462. https://doi.org/10.1146%2Fannurev-med-042420-113212
Plummer EM, Manchester M (2011). "Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design". Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. 3 (2): 174–196. doi:10.1002/wnan.119. PMC 7169818. PMID 20872839. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169818
Decker JM. "Vaccines". Immunology Course 419. Department of Veterinary Science & Microbiology at The University of Arizona. Archived from the original on 2003-06-10. https://web.archive.org/web/20030610062512/http://microvet.arizona.edu/Courses/MIC419/Tutorials/vaccines.html
Hotez PJ, Bottazzi ME (January 2022). "Whole Inactivated Virus and Protein-Based COVID-19 Vaccines". Annual Review of Medicine. 73 (1): 55–64. doi:10.1146/annurev-med-042420-113212. PMID 34637324. S2CID 238747462. https://doi.org/10.1146%2Fannurev-med-042420-113212
Plummer EM, Manchester M (2011). "Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design". Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. 3 (2): 174–196. doi:10.1002/wnan.119. PMC 7169818. PMID 20872839. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169818
Bayani F, Hashkavaei NS, Arjmand S, Rezaei S, Uskoković V, Alijanianzadeh M, et al. (March 2023). "An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines". Progress in Biophysics and Molecular Biology. 178: 32–49. doi:10.1016/j.pbiomolbio.2023.02.004. PMC 9938630. PMID 36801471. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938630
Raffatellu M, Chessa D, Wilson RP, Dusold R, Rubino S, Bäumler AJ (June 2005). "The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa". Infection and Immunity. 73 (6): 3367–3374. doi:10.1128/IAI.73.6.3367-3374.2005. PMC 1111811. PMID 15908363. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1111811
Hu X, Chen Z, Xiong K, Wang J, Rao X, Cong Y (August 2017). "Vi capsular polysaccharide: Synthesis, virulence, and application". Critical Reviews in Microbiology. 43 (4): 440–452. doi:10.1080/1040841X.2016.1249335. PMID 27869515. S2CID 205694206. /wiki/Doi_(identifier)
Lin FY, Ho VA, Khiem HB, Trach DD, Bay PV, Thanh TC, et al. (April 2001). "The efficacy of a Salmonella typhi Vi conjugate vaccine in two-to-five-year-old children". The New England Journal of Medicine. 344 (17): 1263–1269. doi:10.1056/nejm200104263441701. PMID 11320385. https://doi.org/10.1056%2Fnejm200104263441701
Pollard A. "Types of vaccine". Oxford vaccine group 2020. University of Oxford. Archived from the original on 2021-11-16. Retrieved 2023-01-12. https://vk.ovg.ox.ac.uk/vk/types-of-vaccine
Malonis RJ, Lai JR, Vergnolle O (March 2020). "Peptide-Based Vaccines: Current Progress and Future Challenges". Chemical Reviews. 120 (6): 3210–3229. doi:10.1021/acs.chemrev.9b00472. PMC 7094793. PMID 31804810. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094793
Skwarczynski M, Toth I (May 2011). "Peptide-based subunit nanovaccines". Current Drug Delivery. 8 (3): 282–289. doi:10.2174/156720111795256192. PMID 21291373. /wiki/Doi_(identifier)
Kalita P, Tripathi T (May 2022). "Methodological advances in the design of peptide-based vaccines". Drug Discovery Today. 27 (5). Elsevier: 1367–1380. doi:10.1016/j.drudis.2022.03.004. PMID 35278703. S2CID 247399368. /wiki/Doi_(identifier)
Baxter D (December 2007). "Active and passive immunity, vaccine types, excipients and licensing". Occupational Medicine. 57 (8): 552–556. doi:10.1093/occmed/kqm110. PMID 18045976. https://doi.org/10.1093%2Foccmed%2Fkqm110
Nascimento IP, Leite LC (December 2012). "Recombinant vaccines and the development of new vaccine strategies". Brazilian Journal of Medical and Biological Research. 45 (12): 1102–1111. doi:10.1590/S0100-879X2012007500142. PMC 3854212. PMID 22948379. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854212
Wang M, Jiang S, Wang Y (April 2016). "Recent advances in the production of recombinant subunit vaccines in Pichia pastoris". Bioengineered. 7 (3): 155–165. doi:10.1080/21655979.2016.1191707. PMC 4927204. PMID 27246656. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927204
Baxter D (December 2007). "Active and passive immunity, vaccine types, excipients and licensing". Occupational Medicine. 57 (8): 552–556. doi:10.1093/occmed/kqm110. PMID 18045976. https://doi.org/10.1093%2Foccmed%2Fkqm110
Sedova ES, Shcherbinin DN, Migunov AI, Smirnov I, Logunov DI, Shmarov MM, et al. (October 2012). "Recombinant influenza vaccines". Acta Naturae. 4 (4): 17–27. doi:10.32607/20758251-2012-4-4-17-27. PMC 3548171. PMID 23346377. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548171
Sedova ES, Shcherbinin DN, Migunov AI, Smirnov I, Logunov DI, Shmarov MM, et al. (October 2012). "Recombinant influenza vaccines". Acta Naturae. 4 (4): 17–27. doi:10.32607/20758251-2012-4-4-17-27. PMC 3548171. PMID 23346377. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548171
Andersson C. Production and delivery of recombinant subunit vaccines. OCLC 1301470908. http://worldcat.org/oclc/1301470908
Andersson C. Production and delivery of recombinant subunit vaccines. OCLC 1301470908. http://worldcat.org/oclc/1301470908
Rodrigues CM, Plotkin SA (2020-07-14). "Impact of Vaccines; Health, Economic and Social Perspectives". Frontiers in Microbiology. 11: 1526. doi:10.3389/fmicb.2020.01526. PMC 7371956. PMID 32760367. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371956
Clem AS (January 2011). "Fundamentals of vaccine immunology". Journal of Global Infectious Diseases. 3 (1): 73–78. doi:10.4103/0974-777X.77299. PMC 3068582. PMID 21572612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068582
Clem AS (January 2011). "Fundamentals of vaccine immunology". Journal of Global Infectious Diseases. 3 (1): 73–78. doi:10.4103/0974-777X.77299. PMC 3068582. PMID 21572612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068582
Saylor K, Gillam F, Lohneis T, Zhang C (24 February 2020). "Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy". Frontiers in Immunology. 11 (283): 283. doi:10.3389/fimmu.2020.00283. PMC 7050619. PMID 32153587. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050619
LeBien TW, Tedder TF (September 2008). "B lymphocytes: how they develop and function". Blood. 112 (5): 1570–1580. doi:10.1182/blood-2008-02-078071. PMC 2518873. PMID 18725575. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518873
Clem AS (January 2011). "Fundamentals of vaccine immunology". Journal of Global Infectious Diseases. 3 (1): 73–78. doi:10.4103/0974-777X.77299. PMC 3068582. PMID 21572612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068582
Kallon S, Samir S, Goonetilleke N (April 2021). "Vaccines: Underlying Principles of Design and Testing". Clinical Pharmacology and Therapeutics. 109 (4): 987–999. doi:10.1002/cpt.2207. PMC 8048882. PMID 33705574. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048882
Curtsinger JM, Johnson CM, Mescher MF (November 2003). "CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine". Journal of Immunology. 171 (10): 5165–5171. doi:10.4049/jimmunol.171.10.5165. PMID 14607916. S2CID 24326081. https://doi.org/10.4049%2Fjimmunol.171.10.5165
Saylor K, Gillam F, Lohneis T, Zhang C (24 February 2020). "Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy". Frontiers in Immunology. 11 (283): 283. doi:10.3389/fimmu.2020.00283. PMC 7050619. PMID 32153587. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050619
Klarquist J, Cross EW, Thompson SB, Willett B, Aldridge DL, Caffrey-Carr AK, et al. (August 2021). "B cells promote CD8 T cell primary and memory responses to subunit vaccines". Cell Reports. 36 (8): 109591. doi:10.1016/j.celrep.2021.109591. PMC 8456706. PMID 34433030. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456706
Saylor K, Gillam F, Lohneis T, Zhang C (24 February 2020). "Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy". Frontiers in Immunology. 11 (283): 283. doi:10.3389/fimmu.2020.00283. PMC 7050619. PMID 32153587. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050619
Wykes M, MacPherson G (May 2000). "Dendritic cell-B-cell interaction: dendritic cells provide B cells with CD40-independent proliferation signals and CD40-dependent survival signals". Immunology. 100 (1): 1–3. doi:10.1046/j.1365-2567.2000.00044.x. PMC 2326988. PMID 10809952. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2326988
Saylor K, Gillam F, Lohneis T, Zhang C (24 February 2020). "Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy". Frontiers in Immunology. 11 (283): 283. doi:10.3389/fimmu.2020.00283. PMC 7050619. PMID 32153587. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050619
Clem AS (January 2011). "Fundamentals of vaccine immunology". Journal of Global Infectious Diseases. 3 (1): 73–78. doi:10.4103/0974-777X.77299. PMC 3068582. PMID 21572612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068582
LeBien TW, Tedder TF (September 2008). "B lymphocytes: how they develop and function". Blood. 112 (5): 1570–1580. doi:10.1182/blood-2008-02-078071. PMC 2518873. PMID 18725575. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518873
Sedova ES, Shcherbinin DN, Migunov AI, Smirnov I, Logunov DI, Shmarov MM, et al. (October 2012). "Recombinant influenza vaccines". Acta Naturae. 4 (4): 17–27. doi:10.32607/20758251-2012-4-4-17-27. PMC 3548171. PMID 23346377. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548171
Andersson C. Production and delivery of recombinant subunit vaccines. OCLC 1301470908. http://worldcat.org/oclc/1301470908
Meng H, Mao J, Ye Q (June 2022). "Booster vaccination strategy: Necessity, immunization objectives, immunization strategy, and safety". Journal of Medical Virology. 94 (6): 2369–2375. doi:10.1002/jmv.27590. PMID 35028946. S2CID 245933504. /wiki/Doi_(identifier)
Lindskog M, Rockberg J, Uhlén M, Sterky F (May 2005). "Selection of protein epitopes for antibody production". BioTechniques. 38 (5): 723–727. doi:10.2144/05385ST02. PMID 15945371. https://doi.org/10.2144%2F05385ST02
Tijssen P, ed. (1985-01-01). "Chapter 4 The nature of immunogens, antigens, and haptens". Laboratory Techniques in Biochemistry and Molecular Biology. Practice and Theory of Enzyme Immunoassays. Vol. 15. Elsevier. pp. 39–41. doi:10.1016/S0075-7535(08)70134-7. ISBN 9780444806345. 9780444806345
Lindskog M, Rockberg J, Uhlén M, Sterky F (May 2005). "Selection of protein epitopes for antibody production". BioTechniques. 38 (5): 723–727. doi:10.2144/05385ST02. PMID 15945371. https://doi.org/10.2144%2F05385ST02
Liljeqvist S, Ståhl S (July 1999). "Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines". Journal of Biotechnology. 73 (1): 1–33. doi:10.1016/s0168-1656(99)00107-8. PMID 10483112. /wiki/Doi_(identifier)
Francis MJ (March 2018). "Recent Advances in Vaccine Technologies". The Veterinary Clinics of North America. Small Animal Practice. 48 (2): 231–241. doi:10.1016/j.cvsm.2017.10.002. PMC 7132473. PMID 29217317. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132473
Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (March 2009). "Microbial factories for recombinant pharmaceuticals". Microbial Cell Factories. 8 (1): 17. doi:10.1186/1475-2859-8-17. PMC 2669800. PMID 19317892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669800
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, et al. (2013). "Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics". Biotechnology Advances. 31 (2): 140–153. doi:10.1016/j.biotechadv.2012.09.001. PMID 22985698. /wiki/Doi_(identifier)
Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (March 2009). "Microbial factories for recombinant pharmaceuticals". Microbial Cell Factories. 8 (1): 17. doi:10.1186/1475-2859-8-17. PMC 2669800. PMID 19317892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669800
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, et al. (2013). "Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics". Biotechnology Advances. 31 (2): 140–153. doi:10.1016/j.biotechadv.2012.09.001. PMID 22985698. /wiki/Doi_(identifier)
Taguchi S, Ooi T, Mizuno K, Matsusaki H (November 2015). "Advances and needs for endotoxin-free production strains". Applied Microbiology and Biotechnology. 99 (22): 9349–9360. doi:10.1007/s00253-015-6947-9. PMID 26362682. S2CID 8308134. /wiki/Doi_(identifier)
Tripathi NK, Shrivastava A (2018-08-23). "Recent Developments in Recombinant Protein-Based Dengue Vaccines". Frontiers in Immunology. 9: 1919. doi:10.3389/fimmu.2018.01919. PMC 6115509. PMID 30190720. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115509
Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (March 2009). "Microbial factories for recombinant pharmaceuticals". Microbial Cell Factories. 8 (1): 17. doi:10.1186/1475-2859-8-17. PMC 2669800. PMID 19317892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669800
Taguchi S, Ooi T, Mizuno K, Matsusaki H (November 2015). "Advances and needs for endotoxin-free production strains". Applied Microbiology and Biotechnology. 99 (22): 9349–9360. doi:10.1007/s00253-015-6947-9. PMID 26362682. S2CID 8308134. /wiki/Doi_(identifier)
Gerngross TU (November 2004). "Advances in the production of human therapeutic proteins in yeasts and filamentous fungi". Nature Biotechnology. 22 (11): 1409–1414. doi:10.1038/nbt1028. PMID 15529166. S2CID 22230030. /wiki/Doi_(identifier)
Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (March 2009). "Microbial factories for recombinant pharmaceuticals". Microbial Cell Factories. 8 (1): 17. doi:10.1186/1475-2859-8-17. PMC 2669800. PMID 19317892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669800
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, et al. (2013). "Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics". Biotechnology Advances. 31 (2): 140–153. doi:10.1016/j.biotechadv.2012.09.001. PMID 22985698. /wiki/Doi_(identifier)
Zhu J (2012). "Mammalian cell protein expression for biopharmaceutical production". Biotechnology Advances. 30 (5): 1158–1170. doi:10.1016/j.biotechadv.2011.08.022. PMID 21968146. /wiki/Doi_(identifier)
Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed MM, Ramadan HA, et al. (October 2014). "Cell factories for insulin production". Microbial Cell Factories. 13 (1): 141. doi:10.1186/s12934-014-0141-0. PMC 4203937. PMID 25270715. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203937
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, et al. (2013). "Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics". Biotechnology Advances. 31 (2): 140–153. doi:10.1016/j.biotechadv.2012.09.001. PMID 22985698. /wiki/Doi_(identifier)
Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (March 2009). "Microbial factories for recombinant pharmaceuticals". Microbial Cell Factories. 8 (1): 17. doi:10.1186/1475-2859-8-17. PMC 2669800. PMID 19317892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669800
"Shingrix (Zoster Vaccine Recombinant, Adjuvanted)". Food and Drug Administration. Archived from the original on 2023-07-02. Retrieved 2023-04-02. https://www.fda.gov/media/108597/download
Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (March 2009). "Microbial factories for recombinant pharmaceuticals". Microbial Cell Factories. 8 (1): 17. doi:10.1186/1475-2859-8-17. PMC 2669800. PMID 19317892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669800
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, et al. (2013). "Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics". Biotechnology Advances. 31 (2): 140–153. doi:10.1016/j.biotechadv.2012.09.001. PMID 22985698. /wiki/Doi_(identifier)
Jarvis DL (2009). "Chapter 14 Baculovirus–Insect Cell Expression Systems". Guide to Protein Purification, 2nd Edition. Methods in Enzymology. Vol. 463. Elsevier. pp. 191–222. doi:10.1016/s0076-6879(09)63014-7. ISBN 9780123745361. PMID 19892174. 9780123745361
Galleno M, Sick AJ (1999). "Baculovirus expression vector system". Gene Expression Systems. Elsevier. pp. 331–363.
Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (March 2009). "Microbial factories for recombinant pharmaceuticals". Microbial Cell Factories. 8 (1): 17. doi:10.1186/1475-2859-8-17. PMC 2669800. PMID 19317892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669800
Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (March 2009). "Microbial factories for recombinant pharmaceuticals". Microbial Cell Factories. 8 (1): 17. doi:10.1186/1475-2859-8-17. PMC 2669800. PMID 19317892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669800
Jarvis DL (2009). "Chapter 14 Baculovirus–Insect Cell Expression Systems". Guide to Protein Purification, 2nd Edition. Methods in Enzymology. Vol. 463. Elsevier. pp. 191–222. doi:10.1016/s0076-6879(09)63014-7. ISBN 9780123745361. PMID 19892174. 9780123745361
Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (March 2009). "Microbial factories for recombinant pharmaceuticals". Microbial Cell Factories. 8 (1): 17. doi:10.1186/1475-2859-8-17. PMC 2669800. PMID 19317892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669800
"CERVARIX [Human Papillomavirus Bivalent (Types 16 and 18) Vaccine, Recombinant]". Food and Drug Administration. Archived from the original on 2023-08-29. Retrieved 2023-04-02. https://www.fda.gov/media/78013/download
"Flublok Quadrivalent (Influenza Vaccine)". Food and Drug Administration. Archived from the original on 2023-03-26. Retrieved 2023-04-02. https://www.fda.gov/media/123144/download
Wingfield PT (April 2015). "Overview of the purification of recombinant proteins". Current Protocols in Protein Science. 80 (1): 6.1.1–6.1.35. doi:10.1002/0471140864.ps0601s80. PMC 4410719. PMID 25829302. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410719
Shah RR (2017). "Overview of Vaccine Adjuvants: Introduction, History, and Current Status". In Fox CB, Hassett KJ, Brito LA (eds.). Vaccine Adjuvants. Methods in Molecular Biology. Vol. 1494. New York, NY: Springer New York. pp. 1–13. doi:10.1007/978-1-4939-6445-1_1. ISBN 978-1-4939-6443-7. PMID 27718182. 978-1-4939-6443-7
Shah RR (2017). "Overview of Vaccine Adjuvants: Introduction, History, and Current Status". In Fox CB, Hassett KJ, Brito LA (eds.). Vaccine Adjuvants. Methods in Molecular Biology. Vol. 1494. New York, NY: Springer New York. pp. 1–13. doi:10.1007/978-1-4939-6445-1_1. ISBN 978-1-4939-6443-7. PMID 27718182. 978-1-4939-6443-7
Coffman RL, Sher A, Seder RA (October 2010). "Vaccine adjuvants: putting innate immunity to work". Immunity. 33 (4): 492–503. doi:10.1016/j.immuni.2010.10.002. PMC 3420356. PMID 21029960. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3420356
Soler E, Houdebine LM (2007). "Preparation of recombinant vaccines". Biotechnology Annual Review. 13. Elsevier: 65–94. doi:10.1016/s1387-2656(07)13004-0. ISBN 978-0-444-53032-5. PMC 7106376. PMID 17875474. 978-0-444-53032-5
Rambe DS, Del Giudice G, Rossi S, Sanicas M (2015-07-06). "Safety and Mechanism of Action of Licensed Vaccine Adjuvants". International Current Pharmaceutical Journal. 4 (8): 420–431. doi:10.3329/icpj.v4i8.24024. ISSN 2224-9486. https://doi.org/10.3329%2Ficpj.v4i8.24024
Shah RR (2017). "Overview of Vaccine Adjuvants: Introduction, History, and Current Status". In Fox CB, Hassett KJ, Brito LA (eds.). Vaccine Adjuvants. Methods in Molecular Biology. Vol. 1494. New York, NY: Springer New York. pp. 1–13. doi:10.1007/978-1-4939-6445-1_1. ISBN 978-1-4939-6443-7. PMID 27718182. 978-1-4939-6443-7
Rambe DS, Del Giudice G, Rossi S, Sanicas M (2015-07-06). "Safety and Mechanism of Action of Licensed Vaccine Adjuvants". International Current Pharmaceutical Journal. 4 (8): 420–431. doi:10.3329/icpj.v4i8.24024. ISSN 2224-9486. https://doi.org/10.3329%2Ficpj.v4i8.24024
Shah RR (2017). "Overview of Vaccine Adjuvants: Introduction, History, and Current Status". In Fox CB, Hassett KJ, Brito LA (eds.). Vaccine Adjuvants. Methods in Molecular Biology. Vol. 1494. New York, NY: Springer New York. pp. 1–13. doi:10.1007/978-1-4939-6445-1_1. ISBN 978-1-4939-6443-7. PMID 27718182. 978-1-4939-6443-7
Shah RR (2017). "Overview of Vaccine Adjuvants: Introduction, History, and Current Status". In Fox CB, Hassett KJ, Brito LA (eds.). Vaccine Adjuvants. Methods in Molecular Biology. Vol. 1494. New York, NY: Springer New York. pp. 1–13. doi:10.1007/978-1-4939-6445-1_1. ISBN 978-1-4939-6443-7. PMID 27718182. 978-1-4939-6443-7
Soler E, Houdebine LM (2007). "Preparation of recombinant vaccines". Biotechnology Annual Review. 13. Elsevier: 65–94. doi:10.1016/s1387-2656(07)13004-0. ISBN 978-0-444-53032-5. PMC 7106376. PMID 17875474. 978-0-444-53032-5
Qi F, Wu J, Li H, Ma G (2018-06-09). "Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects". Frontiers of Chemical Science and Engineering. 13 (1): 14–27. doi:10.1007/s11705-018-1729-4. ISSN 2095-0179. S2CID 103993541. /wiki/Doi_(identifier)
Qi F, Wu J, Li H, Ma G (2018-06-09). "Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects". Frontiers of Chemical Science and Engineering. 13 (1): 14–27. doi:10.1007/s11705-018-1729-4. ISSN 2095-0179. S2CID 103993541. /wiki/Doi_(identifier)
Soler E, Houdebine LM (2007). "Preparation of recombinant vaccines". Biotechnology Annual Review. 13. Elsevier: 65–94. doi:10.1016/s1387-2656(07)13004-0. ISBN 978-0-444-53032-5. PMC 7106376. PMID 17875474. 978-0-444-53032-5
Soler E, Houdebine LM (2007). "Preparation of recombinant vaccines". Biotechnology Annual Review. 13. Elsevier: 65–94. doi:10.1016/s1387-2656(07)13004-0. ISBN 978-0-444-53032-5. PMC 7106376. PMID 17875474. 978-0-444-53032-5
Vartak A, Sucheck SJ (April 2016). "Recent Advances in Subunit Vaccine Carriers". Vaccines. 4 (2): 12. doi:10.3390/vaccines4020012. PMC 4931629. PMID 27104575. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931629
Liljeqvist S, Ståhl S (July 1999). "Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines". Journal of Biotechnology. 73 (1): 1–33. doi:10.1016/s0168-1656(99)00107-8. PMID 10483112. /wiki/Doi_(identifier)
Baxter D (December 2007). "Active and passive immunity, vaccine types, excipients and licensing". Occupational Medicine. 57 (8): 552–556. doi:10.1093/occmed/kqm110. PMID 18045976. https://doi.org/10.1093%2Foccmed%2Fkqm110
Moyle PM, Toth I (March 2013). "Modern subunit vaccines: development, components, and research opportunities". ChemMedChem. 8 (3): 360–376. doi:10.1002/cmdc.201200487. PMID 23316023. S2CID 205647062. /wiki/Doi_(identifier)
Vartak A, Sucheck SJ (April 2016). "Recent Advances in Subunit Vaccine Carriers". Vaccines. 4 (2): 12. doi:10.3390/vaccines4020012. PMC 4931629. PMID 27104575. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931629
Baxter D (December 2007). "Active and passive immunity, vaccine types, excipients and licensing". Occupational Medicine. 57 (8): 552–556. doi:10.1093/occmed/kqm110. PMID 18045976. https://doi.org/10.1093%2Foccmed%2Fkqm110
Moyle PM, Toth I (March 2013). "Modern subunit vaccines: development, components, and research opportunities". ChemMedChem. 8 (3): 360–376. doi:10.1002/cmdc.201200487. PMID 23316023. S2CID 205647062. /wiki/Doi_(identifier)
Vartak A, Sucheck SJ (April 2016). "Recent Advances in Subunit Vaccine Carriers". Vaccines. 4 (2): 12. doi:10.3390/vaccines4020012. PMC 4931629. PMID 27104575. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931629
Baxter D (December 2007). "Active and passive immunity, vaccine types, excipients and licensing". Occupational Medicine. 57 (8): 552–556. doi:10.1093/occmed/kqm110. PMID 18045976. https://doi.org/10.1093%2Foccmed%2Fkqm110
Moyle PM, Toth I (March 2013). "Modern subunit vaccines: development, components, and research opportunities". ChemMedChem. 8 (3): 360–376. doi:10.1002/cmdc.201200487. PMID 23316023. S2CID 205647062. /wiki/Doi_(identifier)
Baxter D (December 2007). "Active and passive immunity, vaccine types, excipients and licensing". Occupational Medicine. 57 (8): 552–556. doi:10.1093/occmed/kqm110. PMID 18045976. https://doi.org/10.1093%2Foccmed%2Fkqm110
Moyle PM, Toth I (March 2013). "Modern subunit vaccines: development, components, and research opportunities". ChemMedChem. 8 (3): 360–376. doi:10.1002/cmdc.201200487. PMID 23316023. S2CID 205647062. /wiki/Doi_(identifier)
Vartak A, Sucheck SJ (April 2016). "Recent Advances in Subunit Vaccine Carriers". Vaccines. 4 (2): 12. doi:10.3390/vaccines4020012. PMC 4931629. PMID 27104575. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931629
Vartak A, Sucheck SJ (April 2016). "Recent Advances in Subunit Vaccine Carriers". Vaccines. 4 (2): 12. doi:10.3390/vaccines4020012. PMC 4931629. PMID 27104575. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931629
Costa AP, Cobucci RN, da Silva JM, da Costa Lima PH, Giraldo PC, Gonçalves AK (2017). "Safety of Human Papillomavirus 9-Valent Vaccine: A Meta-Analysis of Randomized Trials". Journal of Immunology Research. 2017: 3736201. doi:10.1155/2017/3736201. PMC 5546048. PMID 28812030. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546048
Cox MM, Izikson R, Post P, Dunkle L (July 2015). "Safety, efficacy, and immunogenicity of Flublok in the prevention of seasonal influenza in adults". Therapeutic Advances in Vaccines. 3 (4): 97–108. doi:10.1177/2051013615595595. PMC 4591523. PMID 26478817. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591523
Costa AP, Cobucci RN, da Silva JM, da Costa Lima PH, Giraldo PC, Gonçalves AK (2017). "Safety of Human Papillomavirus 9-Valent Vaccine: A Meta-Analysis of Randomized Trials". Journal of Immunology Research. 2017: 3736201. doi:10.1155/2017/3736201. PMC 5546048. PMID 28812030. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546048
James SF, Chahine EB, Sucher AJ, Hanna C (July 2018). "Shingrix: The New Adjuvanted Recombinant Herpes Zoster Vaccine". The Annals of Pharmacotherapy. 52 (7): 673–680. doi:10.1177/1060028018758431. PMID 29457489. S2CID 206644211. /wiki/Doi_(identifier)
"Possible Side effects from Vaccines". U.S. Centers for Disease Control and Prevention (CDC). 2022-04-06. Archived from the original on 2017-03-17. Retrieved 2022-04-13. https://www.cdc.gov/vaccines/vac-gen/side-effects.htm
McNeil MM, DeStefano F (February 2018). "Vaccine-associated hypersensitivity". The Journal of Allergy and Clinical Immunology. 141 (2): 463–472. doi:10.1016/j.jaci.2017.12.971. PMC 6602527. PMID 29413255. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602527
Fink AL, Klein SL (November 2015). "Sex and Gender Impact Immune Responses to Vaccines Among the Elderly". Physiology. 30 (6): 408–416. doi:10.1152/physiol.00035.2015. PMC 4630198. PMID 26525340. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4630198
Crowe JE (July 2007). "Genetic predisposition for adverse events after vaccination". The Journal of Infectious Diseases. 196 (2): 176–177. doi:10.1086/518800. PMID 17570102. S2CID 14121320. /wiki/Doi_(identifier)
"ACIP Contraindications Guidelines for Immunization". U.S. Centers for Disease Control and Prevention (CDC). 2022-03-22. Archived from the original on 2019-05-01. Retrieved 2022-04-14. https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/contraindications.html
Public Health Agency of Canada (2007-07-18). "Contraindications and precautions: Canadian Immunization Guide". www.canada.ca. Archived from the original on 2023-05-25. Retrieved 2022-04-14. https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-2-vaccine-safety/page-3-contraindications-precautions-concerns.html
"ACIP Contraindications Guidelines for Immunization". U.S. Centers for Disease Control and Prevention (CDC). 2022-03-22. Archived from the original on 2019-05-01. Retrieved 2022-04-14. https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/contraindications.html
"RECOMBIVAX HB Hepatitis B Vaccine (Recombinant)" (PDF). Food and Drug Administration. Archived (PDF) from the original on 2023-05-19. Retrieved 2023-04-02. https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/package-insert-recombivax-hb.pdf
"ENGERIX-B [Hepatitis B Vaccine (Recombinant)]" (PDF). Food and Drug Administration. Archived (PDF) from the original on 2022-04-08. Retrieved 2023-04-02. https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/Package-Insert---ENGERIX-B.pdf
"RECOMBIVAX HB Hepatitis B Vaccine (Recombinant)" (PDF). Food and Drug Administration. Archived (PDF) from the original on 2023-05-19. Retrieved 2023-04-02. https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/package-insert-recombivax-hb.pdf
"ENGERIX-B [Hepatitis B Vaccine (Recombinant)]" (PDF). Food and Drug Administration. Archived (PDF) from the original on 2022-04-08. Retrieved 2023-04-02. https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/Package-Insert---ENGERIX-B.pdf
Van Den Ende C, Marano C, Van Ahee A, Bunge EM, De Moerlooze L (August 2017). "The immunogenicity and safety of GSK's recombinant hepatitis B vaccine in adults: a systematic review of 30 years of experience". Expert Review of Vaccines. 16 (8): 811–832. doi:10.1080/14760584.2017.1338568. PMID 28573913. S2CID 4721288. https://doi.org/10.1080%2F14760584.2017.1338568
"CERVARIX [Human Papillomavirus Bivalent (Types 16 and 18) Vaccine, Recombinant]". Food and Drug Administration. Archived from the original on 2023-08-29. Retrieved 2023-04-02. https://www.fda.gov/media/78013/download
"Gardasil[Human Papillomavirus Quadrivalent (Types 6, 11, 16, and 18) Vaccine, Recombinant]" (PDF). Food and Drug Administration. Archived (PDF) from the original on 2023-06-16. https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/Package-Insert---Gardasil.pdf
"Gardasil 9 (Human Papillomavirus 9-valent Vaccine, Recombinant)". Food and Drug Administration. Archived from the original on 2023-08-29. Retrieved 2023-04-02. https://www.fda.gov/media/90064/download
Gonçalves AK, Cobucci RN, Rodrigues HM, de Melo AG, Giraldo PC (2014). "Safety, tolerability and side effects of human papillomavirus vaccines: a systematic quantitative review". The Brazilian Journal of Infectious Diseases. 18 (6): 651–659. doi:10.1016/j.bjid.2014.02.005. PMC 9425215. PMID 24780368. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9425215
"Gardasil-4 is no longer available". U.S. Centers for Disease Control and Prevention (CDC). 23 May 2022. Archived from the original on 15 October 2019. Retrieved 2 April 2023. https://www.cdc.gov/vaccines/hcp/vis/what-is-new.html
Sagonowsky E (2016-10-21). "GSK exits U.S. market with its HPV vaccine Cervarix". Fierce Pharma. Archived from the original on 2021-07-09. Retrieved 2022-03-15. https://www.fiercepharma.com/pharma/gsk-exits-u-s-market-its-hpv-vaccine-cervarix
"Flublok Quadrivalent (Influenza Vaccine)". Food and Drug Administration. Archived from the original on 2023-03-26. Retrieved 2023-04-02. https://www.fda.gov/media/123144/download
O Murchu E, Comber L, Jordan K, Hawkshaw S, Marshall L, O'Neill M, et al. (February 2022). "Systematic review of the efficacy, effectiveness and safety of recombinant haemagglutinin seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥18 years of age". Reviews in Medical Virology. 33 (3): e2331. doi:10.1002/rmv.2331. PMID 35106885. S2CID 246475234. /wiki/Doi_(identifier)
"Shingrix (Zoster Vaccine Recombinant, Adjuvanted)". Food and Drug Administration. Archived from the original on 2023-07-02. Retrieved 2023-04-02. https://www.fda.gov/media/108597/download
Racine É, Gilca V, Amini R, Tunis M, Ismail S, Sauvageau C (September 2020). "A systematic literature review of the recombinant subunit herpes zoster vaccine use in immunocompromised 18-49 year old patients". Vaccine. 38 (40): 6205–6214. doi:10.1016/j.vaccine.2020.07.049. PMID 32788132. S2CID 221123883. /wiki/Doi_(identifier)
Tricco AC, Zarin W, Cardoso R, Veroniki AA, Khan PA, Nincic V, et al. (October 2018). "Efficacy, effectiveness, and safety of herpes zoster vaccines in adults aged 50 and older: systematic review and network meta-analysis". BMJ. 363: k4029. doi:10.1136/bmj.k4029. PMC 6201212. PMID 30361202. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201212
"Nuvaxovid COVID-19 Vaccine (recombinant, adjuvanted)". 17 December 2021. Archived from the original on 23 December 2021. Retrieved 2 April 2023. https://www.ema.europa.eu/en/medicines/human/EPAR/nuvaxovid#authorisation-details-section
"Nuvaxovid dispersion for injection,COVID-19 Vaccine (recombinant, adjuvanted)" (PDF). Archived (PDF) from the original on 2022-08-17. Retrieved 2023-04-02. https://www.ema.europa.eu/en/documents/product-information/nuvaxovid-epar-product-information_en.pdf
Plotkin S (August 2014). "History of vaccination". Proceedings of the National Academy of Sciences of the United States of America. 111 (34): 12283–12287. Bibcode:2014PNAS..11112283P. doi:10.1073/pnas.1400472111. PMC 4151719. PMID 25136134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151719
Plotkin S (August 2014). "History of vaccination". Proceedings of the National Academy of Sciences of the United States of America. 111 (34): 12283–12287. Bibcode:2014PNAS..11112283P. doi:10.1073/pnas.1400472111. PMC 4151719. PMID 25136134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151719
Plotkin S (August 2014). "History of vaccination". Proceedings of the National Academy of Sciences of the United States of America. 111 (34): 12283–12287. Bibcode:2014PNAS..11112283P. doi:10.1073/pnas.1400472111. PMC 4151719. PMID 25136134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151719
Mascola JR, Fauci AS (February 2020). "Novel vaccine technologies for the 21st century". Nature Reviews. Immunology. 20 (2): 87–88. doi:10.1038/s41577-019-0243-3. PMC 7222935. PMID 31712767. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222935
Tripathi NK, Shrivastava A (2018-08-23). "Recent Developments in Recombinant Protein-Based Dengue Vaccines". Frontiers in Immunology. 9: 1919. doi:10.3389/fimmu.2018.01919. PMC 6115509. PMID 30190720. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115509
Noon JB, Aroian RV (December 2017). "Recombinant subunit vaccines for soil-transmitted helminths". Parasitology. 144 (14): 1845–1870. doi:10.1017/S003118201700138X. PMC 5729844. PMID 28770689. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729844
Marciani DJ, Kensil CR, Beltz GA, Hung CH, Cronier J, Aubert A (February 1991). "Genetically-engineered subunit vaccine against feline leukaemia virus: protective immune response in cats". Vaccine. 9 (2): 89–96. doi:10.1016/0264-410x(91)90262-5. PMID 1647576. /wiki/Doi_(identifier)
Chen WH, Hotez PJ, Bottazzi ME (June 2020). "Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19". Human Vaccines & Immunotherapeutics. 16 (6): 1239–1242. doi:10.1080/21645515.2020.1740560. PMC 7482854. PMID 32298218. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482854
Cuffari B (2022). "What is a Subunit Vaccine?". News medical lifesciences. Archived from the original on 2022-05-25. Retrieved 2023-01-12. https://www.news-medical.net/health/What-is-a-Subunit-Vaccine.aspx
Chen WH, Hotez PJ, Bottazzi ME (June 2020). "Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19". Human Vaccines & Immunotherapeutics. 16 (6): 1239–1242. doi:10.1080/21645515.2020.1740560. PMC 7482854. PMID 32298218. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482854