These examples also have three different symmetry classes (orbits) of edges. However, there exist zero-symmetric graphs with only two orbits of edges.
The smallest such graph has 20 vertices, with LCF notation [6,6,-6,-6]5.
Coxeter, Harold Scott MacDonald; Frucht, Roberto; Powers, David L. (1981), Zero-symmetric graphs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, ISBN 0-12-194580-4, MR 0658666 0-12-194580-4
Coxeter, Frucht & Powers (1981), p. ix. - Coxeter, Harold Scott MacDonald; Frucht, Roberto; Powers, David L. (1981), Zero-symmetric graphs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, ISBN 0-12-194580-4, MR 0658666 https://mathscinet.ams.org/mathscinet-getitem?mr=0658666
Lauri, Josef; Scapellato, Raffaele (2003), Topics in Graph Automorphisms and Reconstruction, London Mathematical Society Student Texts, Cambridge University Press, p. 66, ISBN 9780521529037. 9780521529037
Coxeter, Frucht & Powers (1981), Figure 1.1, p. 5. - Coxeter, Harold Scott MacDonald; Frucht, Roberto; Powers, David L. (1981), Zero-symmetric graphs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, ISBN 0-12-194580-4, MR 0658666 https://mathscinet.ams.org/mathscinet-getitem?mr=0658666
Coxeter, Frucht & Powers (1981), pp. 75 and 80. - Coxeter, Harold Scott MacDonald; Frucht, Roberto; Powers, David L. (1981), Zero-symmetric graphs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, ISBN 0-12-194580-4, MR 0658666 https://mathscinet.ams.org/mathscinet-getitem?mr=0658666
Coxeter, Frucht & Powers (1981), p. 55. - Coxeter, Harold Scott MacDonald; Frucht, Roberto; Powers, David L. (1981), Zero-symmetric graphs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, ISBN 0-12-194580-4, MR 0658666 https://mathscinet.ams.org/mathscinet-getitem?mr=0658666
Conder, Marston D. E.; Pisanski, Tomaž; Žitnik, Arjana (2017), "Vertex-transitive graphs and their arc-types", Ars Mathematica Contemporanea, 12 (2): 383–413, arXiv:1505.02029, doi:10.26493/1855-3974.1146.f96, MR 3646702 /wiki/Marston_Conder
Potočnik, Primož; Spiga, Pablo; Verret, Gabriel (2013), "Cubic vertex-transitive graphs on up to 1280 vertices", Journal of Symbolic Computation, 50: 465–477, arXiv:1201.5317, doi:10.1016/j.jsc.2012.09.002, MR 2996891. /wiki/ArXiv_(identifier)
Coxeter, Frucht & Powers (1981), p. 10. - Coxeter, Harold Scott MacDonald; Frucht, Roberto; Powers, David L. (1981), Zero-symmetric graphs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, ISBN 0-12-194580-4, MR 0658666 https://mathscinet.ams.org/mathscinet-getitem?mr=0658666