Menu
Home
People
Places
Arts
History
Plants & Animals
Science
Life & Culture
Technology
Reference.org
Cantic octagonal tiling
open-in-new
Dual tiling
Related polyhedra and tiling
Uniform (4,3,3) tilings
v
t
e
Symmetry: [(4,3,3)],
(*433)
[(4,3,3)]+, (433)
h{8,3}
t0(4,3,3)
r{3,8}1/2
t0,1(4,3,3)
h{8,3}
t1(4,3,3)
h2{8,3}t1,2(4,3,3)
{3,8}1/2
t2(4,3,3)
h2{8,3}t0,2(4,3,3)
t{3,8}1/2
t0,1,2(4,3,3)
s{3,8}1/2
s(4,3,3)
Uniform duals
V(3.4)3
V3.8.3.8
V(3.4)3
V3.6.4.6
V(3.3)4
V3.6.4.6
V6.6.8
V3.3.3.3.3.4
*
n
33 orbifold symmetries of cantic tilings:
3.6.n.6
Symmetry*n32[1+,2n,3]= [(n,3,3)]
Spherical
Euclidean
Compact Hyperbolic
Paracompact
*233[1+,4,3]= [3,3]
*333[1+,6,3]= [(3,3,3)]
*433[1+,8,3]= [(4,3,3)]
*533[1+,10,3]= [(5,3,3)]
*633...[1+,12,3]= [(6,3,3)]
*∞33[1+,∞,3]= [(∞,3,3)]
Coxeter
Schläfli
= h2{4,3}
= h2{6,3}
= h2{8,3}
= h2{10,3}
= h2{12,3}
= h2{∞,3}
Canticfigure
Vertex
3.6.2.6
3.6.3.6
3.6.4.6
3.6.5.6
3.6.6.6
3.6.∞.6
Domain
Wythoff
2 3 | 3
3 3 | 3
4 3 | 3
5 3 | 3
6 3 | 3
∞ 3 | 3
Dualfigure
Face
V3.6.2.6
V3.6.3.6
V3.6.4.6
V3.6.5.6
V3.6.6.6
V3.6.∞.6
See also
Wikimedia Commons has media related to Uniform tiling 3-6-4-6.
Square tiling
Uniform tilings in hyperbolic plane
List of regular polytopes
John H. Conway
, Heidi Burgiel, Chaim Goodman-Strauss,
The Symmetries of Things
2008,
ISBN
978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
"Chapter 10: Regular honeycombs in hyperbolic space".
The Beauty of Geometry: Twelve Essays
. Dover Publications. 1999.
ISBN
0-486-40919-8.
LCCN
99035678
.
External links
Weisstein, Eric W.
"Hyperbolic tiling"
.
MathWorld
.
Weisstein, Eric W.
"Poincaré hyperbolic disk"
.
MathWorld
.
Hyperbolic and Spherical Tiling Gallery
Archived
2013-03-24 at the
Wayback Machine
KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
Hyperbolic Planar Tessellations, Don Hatch