For a Feller process ( X t ) t ≥ 0 {\displaystyle (X_{t})_{t\geq 0}} with Feller semigroup T = ( T t ) t ≥ 0 {\displaystyle T=(T_{t})_{t\geq 0}} and state space E {\displaystyle E} we define the generator2 ( A , D ( A ) ) {\displaystyle (A,D(A))} by D ( A ) = { f ∈ C 0 ( E ) : lim t ↓ 0 T t f − f t exists as uniform limit } , {\displaystyle D(A)=\left\{f\in C_{0}(E):\lim _{t\downarrow 0}{\frac {T_{t}f-f}{t}}{\text{ exists as uniform limit}}\right\},} A f = lim t ↓ 0 T t f − f t , for any f ∈ D ( A ) . {\displaystyle Af=\lim _{t\downarrow 0}{\frac {T_{t}f-f}{t}},~~{\text{ for any }}f\in D(A).} Here C 0 ( E ) {\displaystyle C_{0}(E)} denotes the Banach space of continuous functions on E {\displaystyle E} vanishing at infinity, equipped with the supremum norm, and T t f ( x ) = E x f ( X t ) = E ( f ( X t ) | X 0 = x ) {\displaystyle T_{t}f(x)=\mathbb {E} ^{x}f(X_{t})=\mathbb {E} (f(X_{t})|X_{0}=x)} . In general, it is not easy to describe the domain of the Feller generator. However, the Feller generator is always closed and densely defined. If X {\displaystyle X} is R d {\displaystyle \mathbb {R} ^{d}} -valued and D ( A ) {\displaystyle D(A)} contains the test functions (compactly supported smooth functions) then3 A f ( x ) = − c ( x ) f ( x ) + l ( x ) ⋅ ∇ f ( x ) + 1 2 div Q ( x ) ∇ f ( x ) + ∫ R d ∖ { 0 } ( f ( x + y ) − f ( x ) − ∇ f ( x ) ⋅ y χ ( | y | ) ) N ( x , d y ) , {\displaystyle Af(x)=-c(x)f(x)+l(x)\cdot \nabla f(x)+{\frac {1}{2}}{\text{div}}Q(x)\nabla f(x)+\int _{\mathbb {R} ^{d}\setminus {\{0\}}}\left(f(x+y)-f(x)-\nabla f(x)\cdot y\chi (|y|)\right)N(x,dy),} where c ( x ) ≥ 0 {\displaystyle c(x)\geq 0} , and ( l ( x ) , Q ( x ) , N ( x , ⋅ ) ) {\displaystyle (l(x),Q(x),N(x,\cdot ))} is a Lévy triplet for fixed x ∈ R d {\displaystyle x\in \mathbb {R} ^{d}} .
The generator of Lévy semigroup is of the form A f ( x ) = l ⋅ ∇ f ( x ) + 1 2 div Q ∇ f ( x ) + ∫ R d ∖ { 0 } ( f ( x + y ) − f ( x ) − ∇ f ( x ) ⋅ y χ ( | y | ) ) ν ( d y ) {\displaystyle Af(x)=l\cdot \nabla f(x)+{\frac {1}{2}}{\text{div}}Q\nabla f(x)+\int _{\mathbb {R} ^{d}\setminus {\{0\}}}\left(f(x+y)-f(x)-\nabla f(x)\cdot y\chi (|y|)\right)\nu (dy)} where l ∈ R d , Q ∈ R d × d {\displaystyle l\in \mathbb {R} ^{d},Q\in \mathbb {R} ^{d\times d}} is positive semidefinite and ν {\displaystyle \nu } is a Lévy measure satisfying ∫ R d ∖ { 0 } min ( | y | 2 , 1 ) ν ( d y ) < ∞ {\displaystyle \int _{\mathbb {R} ^{d}\setminus \{0\}}\min(|y|^{2},1)\nu (dy)<\infty } and 0 ≤ 1 − χ ( s ) ≤ κ min ( s , 1 ) {\displaystyle 0\leq 1-\chi (s)\leq \kappa \min(s,1)} for some κ > 0 {\displaystyle \kappa >0} with s χ ( s ) {\displaystyle s\chi (s)} is bounded. If we define ψ ( ξ ) = ψ ( 0 ) − i l ⋅ ξ + 1 2 ξ ⋅ Q ξ + ∫ R d ∖ { 0 } ( 1 − e i y ⋅ ξ + i ξ ⋅ y χ ( | y | ) ) ν ( d y ) {\displaystyle \psi (\xi )=\psi (0)-il\cdot \xi +{\frac {1}{2}}\xi \cdot Q\xi +\int _{\mathbb {R} ^{d}\setminus \{0\}}(1-e^{iy\cdot \xi }+i\xi \cdot y\chi (|y|))\nu (dy)} for ψ ( 0 ) ≥ 0 {\displaystyle \psi (0)\geq 0} then the generator can be written as A f ( x ) = − ∫ e i x ⋅ ξ ψ ( ξ ) f ^ ( ξ ) d ξ {\displaystyle Af(x)=-\int e^{ix\cdot \xi }\psi (\xi ){\hat {f}}(\xi )d\xi } where f ^ {\displaystyle {\hat {f}}} denotes the Fourier transform. So the generator of a Lévy process (or semigroup) is a Fourier multiplier operator with symbol − ψ {\displaystyle -\psi } .
Let L {\textstyle L} be a Lévy process with symbol ψ {\displaystyle \psi } (see above). Let Φ {\displaystyle \Phi } be locally Lipschitz and bounded. The solution of the SDE d X t = Φ ( X t − ) d L t {\displaystyle dX_{t}=\Phi (X_{t-})dL_{t}} exists for each deterministic initial condition x ∈ R d {\displaystyle x\in \mathbb {R} ^{d}} and yields a Feller process with symbol q ( x , ξ ) = ψ ( Φ ⊤ ( x ) ξ ) . {\displaystyle q(x,\xi )=\psi (\Phi ^{\top }(x)\xi ).}
Note that in general, the solution of an SDE driven by a Feller process which is not Lévy might fail to be Feller or even Markovian.
As a simple example consider d X t = l ( X t ) d t + σ ( X t ) d W t {\textstyle dX_{t}=l(X_{t})dt+\sigma (X_{t})dW_{t}} with a Brownian motion driving noise. If we assume l , σ {\displaystyle l,\sigma } are Lipschitz and of linear growth, then for each deterministic initial condition there exists a unique solution, which is Feller with symbol q ( x , ξ ) = − i l ( x ) ⋅ ξ + 1 2 ξ Q ( x ) ξ . {\displaystyle q(x,\xi )=-il(x)\cdot \xi +{\frac {1}{2}}\xi Q(x)\xi .}
The mean first passage time T 1 {\displaystyle T_{1}} satisfies A T 1 = − 1 {\displaystyle {\mathcal {A}}T_{1}=-1} . This can be used to calculate, for example, the time it takes for a Brownian motion particle in a box to hit the boundary of the box, or the time it takes for a Brownian motion particle in a potential well to escape the well. Under certain assumptions, the escape time satisfies the Arrhenius equation.4
For finite-state continuous time Markov chains the generator may be expressed as a transition rate matrix.
The general n-dimensional diffusion process d X t = μ ( X t , t ) d t + σ ( X t , t ) d W t {\displaystyle dX_{t}=\mu (X_{t},t)\,dt+\sigma (X_{t},t)\,dW_{t}} has generator A f = ( ∇ f ) T μ + t r ( ( ∇ 2 f ) D ) {\displaystyle {\mathcal {A}}f=(\nabla f)^{T}\mu +tr((\nabla ^{2}f)D)} where D = 1 2 σ σ T {\displaystyle D={\frac {1}{2}}\sigma \sigma ^{T}} is the diffusion matrix, ∇ 2 f {\displaystyle \nabla ^{2}f} is the Hessian of the function f {\displaystyle f} , and t r {\displaystyle tr} is the matrix trace. Its adjoint operator is5 A ∗ f = − ∑ i ∂ i ( f μ i ) + ∑ i j ∂ i j ( f D i j ) {\displaystyle {\mathcal {A}}^{*}f=-\sum _{i}\partial _{i}(f\mu _{i})+\sum _{ij}\partial _{ij}(fD_{ij})} The following are commonly used special cases for the general n-dimensional diffusion process.
Böttcher, Björn; Schilling, René; Wang, Jian (2013). Lévy Matters III: Lévy-Type Processes: Construction, Approximation and Sample Path Properties. Springer International Publishing. ISBN 978-3-319-02683-1. 978-3-319-02683-1 ↩
"Lecture 10: Forward and Backward equations for SDEs" (PDF). cims.nyu.edu. https://cims.nyu.edu/~holmes/teaching/asa19/handout_Lecture10_2019.pdf ↩