Schemes that have a mutual authentication step may use different methods of encryption, communication, and verification, but they all share one thing in common: each entity involved in the communication is verified. If Alice wants to communicate with Bob, they will both authenticate the other and verify that it is who they are expecting to communicate with before any data or messages are transmitted. A mutual authentication process that exchanges user IDs may be implemented as follows:
Mutual authentication also ensures information integrity because if the parties are verified to be the correct source, then the information received is reliable as well.
Thus, it becomes a desired characteristic of many mutual authentication schemes to have lightweight properties (e.g. have a low memory footprint) in order to accommodate the system that is storing a lot of data. Many systems implement cloud computing, which allows quick access to large amounts of data, but sometimes large amounts of data can slow down communication. Even with edge-based cloud computing, which is faster than general cloud computing due to a closer proximity between the server and user, lightweight schemes allow for more speed when managing larger amounts of data. One solution to keep schemes lightweight during the mutual authentication process is to limit the number of bits used during communication.
Schemes may sacrifice a better runtime or storage cost when ensuring mutual authentication in order to prioritize protecting the sensitive data.
In mutual authentication schemes that require a user's input password as part of the verification process, there is a higher vulnerability to hackers because the password is human-made rather than a computer-generated certificate. While applications could simply require users to use a computer-generated password, it is inconvenient for people to remember. User-made passwords and the ability to change one's password are important for making an application user-friendly, so many schemes work to accommodate the characteristic. Researchers note that a password based protocol with mutual authentication is important because user identities and passwords are still protected, as the messages are only readable to the two parties involved.
However, a negative aspect about password-based authentication is that password tables can take up a lot of memory space. One way around using a lot of memory during a password-based authentication scheme is to implement one-time passwords (OTP), which is a password sent to the user via SMS or email. OTPs are time-sensitive, which means that they will expire after a certain amount of time and that memory does not need to be stored.
Recently, more schemes have higher level authentication than password based schemes. While password-based authentication is considered as "single-factor authentication," schemes are beginning to implement smart card (two-factor) or biometric-based (three-factor) authentication schemes. Smart cards are simpler to implement and easy for authentication, but still have risks of being tampered with. Biometrics have grown more popular over password-based schemes because it is more difficult to copy or guess session keys when using biometrics, but it can be difficult to encrypt noisy data. Due to these security risks and limitations, schemes can still employ mutual authentication regardless of how many authentication factors are added.
Mutual authentication can be satisfied in radio network schemes, where data transmissions through radio frequencies are secure after verifying the sender and receiver.
Similarly, an alternate RFID tag and reader system that assigns designated readers to tags has been proposed for extra security and low memory cost. Instead of considering all tag readers as one entity, only certain readers can read specific tags. With this method, if a reader is breached, it will not affect the whole system. Individual readers will communicate with specific tags during mutual authentication, which runs in constant time as readers use the same private key for the authentication process.
Many e-Healthcare systems that remotely monitor patient health data use wireless body area networks (WBAN) that transmit data through radio frequencies. This is beneficial for patients that should not be disturbed while being monitored, and can reduced the workload for medical worker and allow them to focus on the more hands-on jobs. However, a large concern for healthcare providers and patients about using remote health data tracking is that sensitive patient data is being transmitted through unsecured channels, so authentication occurs between the medical body area network user (the patient), the Healthcare Service Provider (HSP) and the trusted third party.
Many systems that do not require a human user as part of the system also have protocols that mutually authenticate between parties. In unmanned aerial vehicle (UAV) systems, a platform authentication occurs rather than user authentication. Mutual authentication during vehicle communication prevents one vehicle's system from being breached, which can then affect the whole system negatively. For example, a system of drones can be employed for agriculture work and cargo delivery, but if one drone were to be breached, the whole system has the potential to collapse.
Chen, Yulei; Chen, Jianhua (2020). "A secure three-factor-based authentication with key agreement protocol for e-Health clouds". The Journal of Supercomputing. 77 (4): 3359–3380. doi:10.1007/s11227-020-03395-8. ISSN 0920-8542. S2CID 221146362. /wiki/Doi_(identifier)
Chen, Liquan; Qian, Sijie; Lim, Ming; Wang, Shihui (2018). "An enhanced direct anonymous attestation scheme with mutual authentication for network-connected UAV communication systems". China Communications. 15 (5): 61–76. doi:10.1109/CC.2018.8387987. S2CID 49333360. /wiki/Doi_(identifier)
Jan, Mian Ahmad; Khan, Fazlullah; Alam, Muhammad; Usman, Muhammad (2019). "A payload-based mutual authentication scheme for Internet of Things". Future Generation Computer Systems. 92: 1028–1039. doi:10.1016/j.future.2017.08.035. hdl:10453/117906. S2CID 57380203. /wiki/Doi_(identifier)
Amin, Ruhul; Islam, SK Hafizul; Vijayakumar, Pandi; Khan, Muhammad Khurram; Chang, Victor (2018). "A robust and efficient bilinear pairing based mutual authentication and session key verification over insecure communication". Multimedia Tools and Applications. 77 (9): 11041–11066. doi:10.1007/s11042-017-4996-z. S2CID 13674284. /wiki/Doi_(identifier)
Chen, Yulei; Chen, Jianhua (2020). "A secure three-factor-based authentication with key agreement protocol for e-Health clouds". The Journal of Supercomputing. 77 (4): 3359–3380. doi:10.1007/s11227-020-03395-8. ISSN 0920-8542. S2CID 221146362. /wiki/Doi_(identifier)
Chen, Liquan; Qian, Sijie; Lim, Ming; Wang, Shihui (2018). "An enhanced direct anonymous attestation scheme with mutual authentication for network-connected UAV communication systems". China Communications. 15 (5): 61–76. doi:10.1109/CC.2018.8387987. S2CID 49333360. /wiki/Doi_(identifier)
Chen, Chin-Ling; Chiang, Mao-Lun; Hsieh, Hui-Ching; Liu, Ching-Cheng; Deng, Yong-Yuan (2020). "A Lightweight Mutual Authentication with Wearable Device in Location-Based Mobile Edge Computing". Wireless Personal Communications. 113: 575–598. doi:10.1007/s11277-020-07240-2. S2CID 218934756. /wiki/Doi_(identifier)
Sahoo, Shreeya Swagatika; Mohanty, Sujata; Majhi, Banshidhar (2020). "Improved Biometric-Based Mutual Authentication and Key Agreement Scheme Using ECC". Wireless Personal Communications. 111 (2): 991–1017. doi:10.1007/s11277-019-06897-8. S2CID 208125038. /wiki/Doi_(identifier)
"Mutual TLS: Securing Microservices in Service Mesh". The New Stack. 2021-02-01. Retrieved 2021-02-20. https://thenewstack.io/mutual-tls-microservices-encryption-for-service-mesh/
Sasikaladevi, N.; Malathi, D. (2019). "Energy Efficient Lightweight Mutual Authentication Protocol (REAP) for MBAN Based on Genus-2 Hyper-Elliptic Curve". Wireless Personal Communications. 109 (4): 2471–2488. doi:10.1007/s11277-019-06693-4. S2CID 204084523. /wiki/Doi_(identifier)
Dewanta, Favian; Mambo, Masahiro (2019). "A Mutual Authentication Scheme for Secure Fog Computing Service Handover in Vehicular Network Environment". IEEE Access. 7: 103095–103114. Bibcode:2019IEEEA...7j3095D. doi:10.1109/ACCESS.2019.2931217. S2CID 199509951. https://doi.org/10.1109%2FACCESS.2019.2931217
Melki, Reem; Noura, Hassan N.; Chehab, Ali (2020). "Lightweight multi-factor mutual authentication protocol for IoT devices". International Journal of Information Security. 19 (6): 679–694. doi:10.1007/s10207-019-00484-5. S2CID 209340123. /wiki/Doi_(identifier)
Narwal, Bhawna; Mohapatra, Amar Kumar (2020). "SEEMAKA: Secured Energy-Efficient Mutual Authentication and Key Agreement Scheme for Wireless Body Area Networks". Wireless Personal Communications. 113 (4): 1985–2008. doi:10.1007/s11277-020-07304-3. S2CID 216529906. /wiki/Doi_(identifier)
Narwal, Bhawna; Mohapatra, Amar Kumar (2020). "SEEMAKA: Secured Energy-Efficient Mutual Authentication and Key Agreement Scheme for Wireless Body Area Networks". Wireless Personal Communications. 113 (4): 1985–2008. doi:10.1007/s11277-020-07304-3. S2CID 216529906. /wiki/Doi_(identifier)
Melki, Reem; Noura, Hassan N.; Chehab, Ali (2020). "Lightweight multi-factor mutual authentication protocol for IoT devices". International Journal of Information Security. 19 (6): 679–694. doi:10.1007/s10207-019-00484-5. S2CID 209340123. /wiki/Doi_(identifier)
Narwal, Bhawna; Mohapatra, Amar Kumar (2020). "SEEMAKA: Secured Energy-Efficient Mutual Authentication and Key Agreement Scheme for Wireless Body Area Networks". Wireless Personal Communications. 113 (4): 1985–2008. doi:10.1007/s11277-020-07304-3. S2CID 216529906. /wiki/Doi_(identifier)
Moallem, Abbas, ed. (2021). HCI for Cybersecurity, Privacy and Trust. Lecture Notes in Computer Science. Vol. 12788. doi:10.1007/978-3-030-77392-2. ISBN 978-3-030-77391-5. ISSN 0302-9743. 978-3-030-77391-5
Chen, Chin-Ling; Chiang, Mao-Lun; Hsieh, Hui-Ching; Liu, Ching-Cheng; Deng, Yong-Yuan (2020). "A Lightweight Mutual Authentication with Wearable Device in Location-Based Mobile Edge Computing". Wireless Personal Communications. 113: 575–598. doi:10.1007/s11277-020-07240-2. S2CID 218934756. /wiki/Doi_(identifier)
Chen, Chin-Ling; Chiang, Mao-Lun; Hsieh, Hui-Ching; Liu, Ching-Cheng; Deng, Yong-Yuan (2020). "A Lightweight Mutual Authentication with Wearable Device in Location-Based Mobile Edge Computing". Wireless Personal Communications. 113: 575–598. doi:10.1007/s11277-020-07240-2. S2CID 218934756. /wiki/Doi_(identifier)
Dierks, Tim (August 2008). "The Transport Layer Security (TLS) Protocol Version 1.2". tools.ietf.org. Retrieved 2016-04-22. https://tools.ietf.org/html/rfc5246#section-7.4.6
"Mutual TLS: Securing Microservices in Service Mesh". The New Stack. 2021-02-01. Retrieved 2021-02-20. https://thenewstack.io/mutual-tls-microservices-encryption-for-service-mesh/
Chen, Liquan; Qian, Sijie; Lim, Ming; Wang, Shihui (2018). "An enhanced direct anonymous attestation scheme with mutual authentication for network-connected UAV communication systems". China Communications. 15 (5): 61–76. doi:10.1109/CC.2018.8387987. S2CID 49333360. /wiki/Doi_(identifier)
Chen, Liquan; Qian, Sijie; Lim, Ming; Wang, Shihui (2018). "An enhanced direct anonymous attestation scheme with mutual authentication for network-connected UAV communication systems". China Communications. 15 (5): 61–76. doi:10.1109/CC.2018.8387987. S2CID 49333360. /wiki/Doi_(identifier)
Dewanta, Favian; Mambo, Masahiro (2019). "A Mutual Authentication Scheme for Secure Fog Computing Service Handover in Vehicular Network Environment". IEEE Access. 7: 103095–103114. Bibcode:2019IEEEA...7j3095D. doi:10.1109/ACCESS.2019.2931217. S2CID 199509951. https://doi.org/10.1109%2FACCESS.2019.2931217
Jan, Mian Ahmad; Khan, Fazlullah; Alam, Muhammad; Usman, Muhammad (2019). "A payload-based mutual authentication scheme for Internet of Things". Future Generation Computer Systems. 92: 1028–1039. doi:10.1016/j.future.2017.08.035. hdl:10453/117906. S2CID 57380203. /wiki/Doi_(identifier)
Chen, Chin-Ling; Chiang, Mao-Lun; Hsieh, Hui-Ching; Liu, Ching-Cheng; Deng, Yong-Yuan (2020). "A Lightweight Mutual Authentication with Wearable Device in Location-Based Mobile Edge Computing". Wireless Personal Communications. 113: 575–598. doi:10.1007/s11277-020-07240-2. S2CID 218934756. /wiki/Doi_(identifier)
Jan, Mian Ahmad; Khan, Fazlullah; Alam, Muhammad; Usman, Muhammad (2019). "A payload-based mutual authentication scheme for Internet of Things". Future Generation Computer Systems. 92: 1028–1039. doi:10.1016/j.future.2017.08.035. hdl:10453/117906. S2CID 57380203. /wiki/Doi_(identifier)
g. Lopes, Ana Paula; Gondim, Paulo R. L. (2020). "Mutual Authentication Protocol for D2D Communications in a Cloud-Based E-Health System". Sensors. 20 (7): 2072. Bibcode:2020Senso..20.2072G. doi:10.3390/s20072072. PMC 7181216. PMID 32272675. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181216
g. Lopes, Ana Paula; Gondim, Paulo R. L. (2020). "Mutual Authentication Protocol for D2D Communications in a Cloud-Based E-Health System". Sensors. 20 (7): 2072. Bibcode:2020Senso..20.2072G. doi:10.3390/s20072072. PMC 7181216. PMID 32272675. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181216
Chen, Liquan; Qian, Sijie; Lim, Ming; Wang, Shihui (2018). "An enhanced direct anonymous attestation scheme with mutual authentication for network-connected UAV communication systems". China Communications. 15 (5): 61–76. doi:10.1109/CC.2018.8387987. S2CID 49333360. /wiki/Doi_(identifier)
Narwal, Bhawna; Mohapatra, Amar Kumar (2020). "SEEMAKA: Secured Energy-Efficient Mutual Authentication and Key Agreement Scheme for Wireless Body Area Networks". Wireless Personal Communications. 113 (4): 1985–2008. doi:10.1007/s11277-020-07304-3. S2CID 216529906. /wiki/Doi_(identifier)
Karuppiah, Marimuthu; Saravanan, R. (2015). "Cryptanalysis and an Improvement of New Remote Mutual Authentication Scheme using Smart Cards". Journal of Discrete Mathematical Sciences and Cryptography. 18 (5): 623–649. doi:10.1080/09720529.2015.1013693. S2CID 62591965. /wiki/Doi_(identifier)
Karuppiah, Marimuthu; Das, Ashok Kumar; Li, Xiong; Kumari, Saru; Wu, Fan; Chaudhry, Shehzad Ashraf; Niranchana, R. (2019). "Secure Remote User Mutual Authentication Scheme with Key Agreement for Cloud Environment". Mobile Networks and Applications. 24 (3): 1046–1062. doi:10.1007/s11036-018-1061-8. S2CID 64720667. /wiki/Doi_(identifier)
Karuppiah, Marimuthu; Saravanan, R. (2015). "Cryptanalysis and an Improvement of New Remote Mutual Authentication Scheme using Smart Cards". Journal of Discrete Mathematical Sciences and Cryptography. 18 (5): 623–649. doi:10.1080/09720529.2015.1013693. S2CID 62591965. /wiki/Doi_(identifier)
Sharma, Mohit Kr; Nene, Manisha J. (2020). "Two-factor authentication using biometric based quantum operations". Security and Privacy. 3 (3). doi:10.1002/spy2.102. https://doi.org/10.1002%2Fspy2.102
Karuppiah, Marimuthu; Saravanan, R. (2015). "Cryptanalysis and an Improvement of New Remote Mutual Authentication Scheme using Smart Cards". Journal of Discrete Mathematical Sciences and Cryptography. 18 (5): 623–649. doi:10.1080/09720529.2015.1013693. S2CID 62591965. /wiki/Doi_(identifier)
Karuppiah, Marimuthu; Saravanan, R. (2015). "Cryptanalysis and an Improvement of New Remote Mutual Authentication Scheme using Smart Cards". Journal of Discrete Mathematical Sciences and Cryptography. 18 (5): 623–649. doi:10.1080/09720529.2015.1013693. S2CID 62591965. /wiki/Doi_(identifier)
Sahoo, Shreeya Swagatika; Mohanty, Sujata; Majhi, Banshidhar (2020). "Improved Biometric-Based Mutual Authentication and Key Agreement Scheme Using ECC". Wireless Personal Communications. 111 (2): 991–1017. doi:10.1007/s11277-019-06897-8. S2CID 208125038. /wiki/Doi_(identifier)
Sharma, Mohit Kr; Nene, Manisha J. (2020). "Two-factor authentication using biometric based quantum operations". Security and Privacy. 3 (3). doi:10.1002/spy2.102. https://doi.org/10.1002%2Fspy2.102
Sahoo, Shreeya Swagatika; Mohanty, Sujata; Majhi, Banshidhar (2020). "Improved Biometric-Based Mutual Authentication and Key Agreement Scheme Using ECC". Wireless Personal Communications. 111 (2): 991–1017. doi:10.1007/s11277-019-06897-8. S2CID 208125038. /wiki/Doi_(identifier)
Melki, Reem; Noura, Hassan N.; Chehab, Ali (2020). "Lightweight multi-factor mutual authentication protocol for IoT devices". International Journal of Information Security. 19 (6): 679–694. doi:10.1007/s10207-019-00484-5. S2CID 209340123. /wiki/Doi_(identifier)
g. Lopes, Ana Paula; Gondim, Paulo R. L. (2020). "Mutual Authentication Protocol for D2D Communications in a Cloud-Based E-Health System". Sensors. 20 (7): 2072. Bibcode:2020Senso..20.2072G. doi:10.3390/s20072072. PMC 7181216. PMID 32272675. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181216
Narwal, Bhawna; Mohapatra, Amar Kumar (2020). "SEEMAKA: Secured Energy-Efficient Mutual Authentication and Key Agreement Scheme for Wireless Body Area Networks". Wireless Personal Communications. 113 (4): 1985–2008. doi:10.1007/s11277-020-07304-3. S2CID 216529906. /wiki/Doi_(identifier)
Choudhary, Karanjeet; Gaba, Gurjot Singh; Butun, Ismail; Kumar, Pardeep (2020). "MAKE-IT—A Lightweight Mutual Authentication and Key Exchange Protocol for Industrial Internet of Things". Sensors. 20 (18): 5166. Bibcode:2020Senso..20.5166C. doi:10.3390/s20185166. PMC 7570918. PMID 32927788. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570918
Anandhi, S.; Anitha, R.; Sureshkumar, Venkatasamy (2020). "An Authentication Protocol to Track an Object with Multiple RFID Tags Using Cloud Computing Environment". Wireless Personal Communications. 113 (4): 2339–2361. doi:10.1007/s11277-020-07330-1. S2CID 219070999. /wiki/Doi_(identifier)
Anandhi, S.; Anitha, R.; Sureshkumar, Venkatasamy (2020). "An Authentication Protocol to Track an Object with Multiple RFID Tags Using Cloud Computing Environment". Wireless Personal Communications. 113 (4): 2339–2361. doi:10.1007/s11277-020-07330-1. S2CID 219070999. /wiki/Doi_(identifier)
Anandhi, S.; Anitha, R.; Sureshkumar, Venkatasamy (2020). "An Authentication Protocol to Track an Object with Multiple RFID Tags Using Cloud Computing Environment". Wireless Personal Communications. 113 (4): 2339–2361. doi:10.1007/s11277-020-07330-1. S2CID 219070999. /wiki/Doi_(identifier)
Guo, Fuchun; Mu, Yi; Susilo, Willy; Varadharajan, Vijay (2017). "Privacy-Preserving Mutual Authentication in RFID with Designated Readers". Wireless Personal Communications. 96 (3): 4819–4845. doi:10.1007/s11277-017-4430-x. S2CID 207264759. https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1414&context=eispapers1
Narwal, Bhawna; Mohapatra, Amar Kumar (2020). "SEEMAKA: Secured Energy-Efficient Mutual Authentication and Key Agreement Scheme for Wireless Body Area Networks". Wireless Personal Communications. 113 (4): 1985–2008. doi:10.1007/s11277-020-07304-3. S2CID 216529906. /wiki/Doi_(identifier)
Sasikaladevi, N.; Malathi, D. (2019). "Energy Efficient Lightweight Mutual Authentication Protocol (REAP) for MBAN Based on Genus-2 Hyper-Elliptic Curve". Wireless Personal Communications. 109 (4): 2471–2488. doi:10.1007/s11277-019-06693-4. S2CID 204084523. /wiki/Doi_(identifier)
Chen, Liquan; Qian, Sijie; Lim, Ming; Wang, Shihui (2018). "An enhanced direct anonymous attestation scheme with mutual authentication for network-connected UAV communication systems". China Communications. 15 (5): 61–76. doi:10.1109/CC.2018.8387987. S2CID 49333360. /wiki/Doi_(identifier)
g. Lopes, Ana Paula; Gondim, Paulo R. L. (2020). "Mutual Authentication Protocol for D2D Communications in a Cloud-Based E-Health System". Sensors. 20 (7): 2072. Bibcode:2020Senso..20.2072G. doi:10.3390/s20072072. PMC 7181216. PMID 32272675. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181216
Liu, Xiaoxue; Ma, Wenping; Cao, Hao (2019). "MBPA: A Medibchain-Based Privacy-Preserving Mutual Authentication in TMIS for Mobile Medical Cloud Architecture". IEEE Access. 7: 149282–149298. Bibcode:2019IEEEA...7n9282L. doi:10.1109/ACCESS.2019.2947313. S2CID 204863294. https://doi.org/10.1109%2FACCESS.2019.2947313
Liu, Xiaoxue; Ma, Wenping; Cao, Hao (2019). "NPMA: A Novel Privacy-Preserving Mutual Authentication in TMIS for Mobile Edge-Cloud Architecture". Journal of Medical Systems. 43 (10): 318. doi:10.1007/s10916-019-1444-9. PMID 31522286. S2CID 202570185. /wiki/Doi_(identifier)
Liu, Xiaoxue; Ma, Wenping; Cao, Hao (2019). "NPMA: A Novel Privacy-Preserving Mutual Authentication in TMIS for Mobile Edge-Cloud Architecture". Journal of Medical Systems. 43 (10): 318. doi:10.1007/s10916-019-1444-9. PMID 31522286. S2CID 202570185. /wiki/Doi_(identifier)
Chen, Chin-Ling; Chiang, Mao-Lun; Hsieh, Hui-Ching; Liu, Ching-Cheng; Deng, Yong-Yuan (2020). "A Lightweight Mutual Authentication with Wearable Device in Location-Based Mobile Edge Computing". Wireless Personal Communications. 113: 575–598. doi:10.1007/s11277-020-07240-2. S2CID 218934756. /wiki/Doi_(identifier)
Dewanta, Favian; Mambo, Masahiro (2019). "A Mutual Authentication Scheme for Secure Fog Computing Service Handover in Vehicular Network Environment". IEEE Access. 7: 103095–103114. Bibcode:2019IEEEA...7j3095D. doi:10.1109/ACCESS.2019.2931217. S2CID 199509951. https://doi.org/10.1109%2FACCESS.2019.2931217
Chen, Liquan; Qian, Sijie; Lim, Ming; Wang, Shihui (2018). "An enhanced direct anonymous attestation scheme with mutual authentication for network-connected UAV communication systems". China Communications. 15 (5): 61–76. doi:10.1109/CC.2018.8387987. S2CID 49333360. /wiki/Doi_(identifier)
Chen, Liquan; Qian, Sijie; Lim, Ming; Wang, Shihui (2018). "An enhanced direct anonymous attestation scheme with mutual authentication for network-connected UAV communication systems". China Communications. 15 (5): 61–76. doi:10.1109/CC.2018.8387987. S2CID 49333360. /wiki/Doi_(identifier)