Menu
Home
People
Places
Arts
History
Plants & Animals
Science
Life & Culture
Technology
Reference.org
Dual q-Krawtchouk polynomials
open-in-new
Definition
The polynomials are given in terms of
basic hypergeometric functions
by
K n ( λ ( x ) ; c , N | q ) = 3 ϕ 2 ( q − n , q − x , c q x − N ; q − N , 0 | q ; q ) , n = 0 , 1 , 2 , . . . , N , {\displaystyle K_{n}(\lambda (x);c,N|q)={}_{3}\phi _{2}(q^{-n},q^{-x},cq^{x-N};q^{-N},0|q;q),\quad n=0,1,2,...,N,} where λ ( x ) = q − x + c q x − N . {\displaystyle \lambda (x)=q^{-x}+cq^{x-N}.}
Gasper, George; Rahman, Mizan (2004),
Basic hypergeometric series
, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.),
Cambridge University Press
,
ISBN
978-0-521-83357-8,
MR
2128719
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010),
Hypergeometric orthogonal polynomials and their q-analogues
, Springer Monographs in Mathematics, Berlin, New York:
Springer-Verlag
,
doi
:
10.1007/978-3-642-05014-5
,
ISBN
978-3-642-05013-8,
MR
2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010),
"Chapter 18: Orthogonal Polynomials"
, in
Olver, Frank W. J.
; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.),
NIST Handbook of Mathematical Functions
, Cambridge University Press,
ISBN
978-0-521-19225-5,
MR
2723248
.