The theorem states that the ring of GL ( V ) {\displaystyle \operatorname {GL} (V)} -invariant polynomial functions on V ∗ p ⊕ V q {\displaystyle {V^{*}}^{p}\oplus V^{q}} is generated by the functions ⟨ α i | v j ⟩ {\displaystyle \langle \alpha _{i}|v_{j}\rangle } , where α i {\displaystyle \alpha _{i}} are in V ∗ {\displaystyle V^{*}} and v j ∈ V {\displaystyle v_{j}\in V} .3
Let V, W be finite-dimensional vector spaces over the complex numbers. Then the only GL ( V ) × GL ( W ) {\displaystyle \operatorname {GL} (V)\times \operatorname {GL} (W)} -invariant prime ideals in C [ hom ( V , W ) ] {\displaystyle \mathbb {C} [\operatorname {hom} (V,W)]} are the determinant ideal I k = C [ hom ( V , W ) ] D k {\displaystyle I_{k}=\mathbb {C} [\operatorname {hom} (V,W)]D_{k}} generated by the determinants of all the k × k {\displaystyle k\times k} -minors.4
Procesi 2007, Ch. 9, § 1.4. - Procesi, Claudio (2007). Lie groups : an approach through invariants and representations. New York: Springer. ISBN 978-0-387-26040-2. OCLC 191464530. https://search.worldcat.org/oclc/191464530 ↩
Procesi 2007, Ch. 13 develops this theory. - Procesi, Claudio (2007). Lie groups : an approach through invariants and representations. New York: Springer. ISBN 978-0-387-26040-2. OCLC 191464530. https://search.worldcat.org/oclc/191464530 ↩
Procesi 2007, Ch. 11, § 5.1. - Procesi, Claudio (2007). Lie groups : an approach through invariants and representations. New York: Springer. ISBN 978-0-387-26040-2. OCLC 191464530. https://search.worldcat.org/oclc/191464530 ↩