Conversion formulae |
---|
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part). |
3D formulae | K = {\displaystyle K=\,} | E = {\displaystyle E=\,} | λ = {\displaystyle \lambda =\,} | G = {\displaystyle G=\,} | ν = {\displaystyle \nu =\,} | M = {\displaystyle M=\,} | Notes |
( K , E ) {\displaystyle (K,\,E)} | | | 3 K ( 3 K − E ) 9 K − E {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}} | 3 K E 9 K − E {\displaystyle {\tfrac {3KE}{9K-E}}} | 3 K − E 6 K {\displaystyle {\tfrac {3K-E}{6K}}} | 3 K ( 3 K + E ) 9 K − E {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}} | |
( K , λ ) {\displaystyle (K,\,\lambda )} | | 9 K ( K − λ ) 3 K − λ {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}} | | 3 ( K − λ ) 2 {\displaystyle {\tfrac {3(K-\lambda )}{2}}} | λ 3 K − λ {\displaystyle {\tfrac {\lambda }{3K-\lambda }}} | 3 K − 2 λ {\displaystyle 3K-2\lambda \,} | |
( K , G ) {\displaystyle (K,\,G)} | | 9 K G 3 K + G {\displaystyle {\tfrac {9KG}{3K+G}}} | K − 2 G 3 {\displaystyle K-{\tfrac {2G}{3}}} | | 3 K − 2 G 2 ( 3 K + G ) {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}} | K + 4 G 3 {\displaystyle K+{\tfrac {4G}{3}}} | |
( K , ν ) {\displaystyle (K,\,\nu )} | | 3 K ( 1 − 2 ν ) {\displaystyle 3K(1-2\nu )\,} | 3 K ν 1 + ν {\displaystyle {\tfrac {3K\nu }{1+\nu }}} | 3 K ( 1 − 2 ν ) 2 ( 1 + ν ) {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}} | | 3 K ( 1 − ν ) 1 + ν {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}} | |
( K , M ) {\displaystyle (K,\,M)} | | 9 K ( M − K ) 3 K + M {\displaystyle {\tfrac {9K(M-K)}{3K+M}}} | 3 K − M 2 {\displaystyle {\tfrac {3K-M}{2}}} | 3 ( M − K ) 4 {\displaystyle {\tfrac {3(M-K)}{4}}} | 3 K − M 3 K + M {\displaystyle {\tfrac {3K-M}{3K+M}}} | | |
( E , λ ) {\displaystyle (E,\,\lambda )} | E + 3 λ + R 6 {\displaystyle {\tfrac {E+3\lambda +R}{6}}} | | | E − 3 λ + R 4 {\displaystyle {\tfrac {E-3\lambda +R}{4}}} | 2 λ E + λ + R {\displaystyle {\tfrac {2\lambda }{E+\lambda +R}}} | E − λ + R 2 {\displaystyle {\tfrac {E-\lambda +R}{2}}} | R = E 2 + 9 λ 2 + 2 E λ {\displaystyle R={\sqrt {E^{2}+9\lambda ^{2}+2E\lambda }}} |
( E , G ) {\displaystyle (E,\,G)} | E G 3 ( 3 G − E ) {\displaystyle {\tfrac {EG}{3(3G-E)}}} | | G ( E − 2 G ) 3 G − E {\displaystyle {\tfrac {G(E-2G)}{3G-E}}} | | E 2 G − 1 {\displaystyle {\tfrac {E}{2G}}-1} | G ( 4 G − E ) 3 G − E {\displaystyle {\tfrac {G(4G-E)}{3G-E}}} | |
( E , ν ) {\displaystyle (E,\,\nu )} | E 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {E}{3(1-2\nu )}}} | | E ν ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}} | E 2 ( 1 + ν ) {\displaystyle {\tfrac {E}{2(1+\nu )}}} | | E ( 1 − ν ) ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}} | |
( E , M ) {\displaystyle (E,\,M)} | 3 M − E + S 6 {\displaystyle {\tfrac {3M-E+S}{6}}} | | M − E + S 4 {\displaystyle {\tfrac {M-E+S}{4}}} | 3 M + E − S 8 {\displaystyle {\tfrac {3M+E-S}{8}}} | E − M + S 4 M {\displaystyle {\tfrac {E-M+S}{4M}}} | | S = ± E 2 + 9 M 2 − 10 E M {\displaystyle S=\pm {\sqrt {E^{2}+9M^{2}-10EM}}} There are two valid solutions. The plus sign leads to ν ≥ 0 {\displaystyle \nu \geq 0} . The minus sign leads to ν ≤ 0 {\displaystyle \nu \leq 0} . |
( λ , G ) {\displaystyle (\lambda ,\,G)} | λ + 2 G 3 {\displaystyle \lambda +{\tfrac {2G}{3}}} | G ( 3 λ + 2 G ) λ + G {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}} | | | λ 2 ( λ + G ) {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}} | λ + 2 G {\displaystyle \lambda +2G\,} | |
( λ , ν ) {\displaystyle (\lambda ,\,\nu )} | λ ( 1 + ν ) 3 ν {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}} | λ ( 1 + ν ) ( 1 − 2 ν ) ν {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}} | | λ ( 1 − 2 ν ) 2 ν {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}} | | λ ( 1 − ν ) ν {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}} | Cannot be used when ν = 0 ⇔ λ = 0 {\displaystyle \nu =0\Leftrightarrow \lambda =0} |
( λ , M ) {\displaystyle (\lambda ,\,M)} | M + 2 λ 3 {\displaystyle {\tfrac {M+2\lambda }{3}}} | ( M − λ ) ( M + 2 λ ) M + λ {\displaystyle {\tfrac {(M-\lambda )(M+2\lambda )}{M+\lambda }}} | | M − λ 2 {\displaystyle {\tfrac {M-\lambda }{2}}} | λ M + λ {\displaystyle {\tfrac {\lambda }{M+\lambda }}} | | |
( G , ν ) {\displaystyle (G,\,\nu )} | 2 G ( 1 + ν ) 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}} | 2 G ( 1 + ν ) {\displaystyle 2G(1+\nu )\,} | 2 G ν 1 − 2 ν {\displaystyle {\tfrac {2G\nu }{1-2\nu }}} | | | 2 G ( 1 − ν ) 1 − 2 ν {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}} | |
( G , M ) {\displaystyle (G,\,M)} | M − 4 G 3 {\displaystyle M-{\tfrac {4G}{3}}} | G ( 3 M − 4 G ) M − G {\displaystyle {\tfrac {G(3M-4G)}{M-G}}} | M − 2 G {\displaystyle M-2G\,} | | M − 2 G 2 M − 2 G {\displaystyle {\tfrac {M-2G}{2M-2G}}} | | |
( ν , M ) {\displaystyle (\nu ,\,M)} | M ( 1 + ν ) 3 ( 1 − ν ) {\displaystyle {\tfrac {M(1+\nu )}{3(1-\nu )}}} | M ( 1 + ν ) ( 1 − 2 ν ) 1 − ν {\displaystyle {\tfrac {M(1+\nu )(1-2\nu )}{1-\nu }}} | M ν 1 − ν {\displaystyle {\tfrac {M\nu }{1-\nu }}} | M ( 1 − 2 ν ) 2 ( 1 − ν ) {\displaystyle {\tfrac {M(1-2\nu )}{2(1-\nu )}}} | | | |
2D formulae | K 2 D = {\displaystyle K_{\mathrm {2D} }=\,} | E 2 D = {\displaystyle E_{\mathrm {2D} }=\,} | λ 2 D = {\displaystyle \lambda _{\mathrm {2D} }=\,} | G 2 D = {\displaystyle G_{\mathrm {2D} }=\,} | ν 2 D = {\displaystyle \nu _{\mathrm {2D} }=\,} | M 2 D = {\displaystyle M_{\mathrm {2D} }=\,} | Notes |
( K 2 D , E 2 D ) {\displaystyle (K_{\mathrm {2D} },\,E_{\mathrm {2D} })} | | | 2 K 2 D ( 2 K 2 D − E 2 D ) 4 K 2 D − E 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} | K 2 D E 2 D 4 K 2 D − E 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} | 2 K 2 D − E 2 D 2 K 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}} | 4 K 2 D 2 4 K 2 D − E 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} | |
( K 2 D , λ 2 D ) {\displaystyle (K_{\mathrm {2D} },\,\lambda _{\mathrm {2D} })} | | 4 K 2 D ( K 2 D − λ 2 D ) 2 K 2 D − λ 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}} | | K 2 D − λ 2 D {\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }} | λ 2 D 2 K 2 D − λ 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}} | 2 K 2 D − λ 2 D {\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }} | |
( K 2 D , G 2 D ) {\displaystyle (K_{\mathrm {2D} },\,G_{\mathrm {2D} })} | | 4 K 2 D G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}} | K 2 D − G 2 D {\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }} | | K 2 D − G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}} | K 2 D + G 2 D {\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }} | |
( K 2 D , ν 2 D ) {\displaystyle (K_{\mathrm {2D} },\,\nu _{\mathrm {2D} })} | | 2 K 2 D ( 1 − ν 2 D ) {\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })\,} | 2 K 2 D ν 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}} | K 2 D ( 1 − ν 2 D ) 1 + ν 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}} | | 2 K 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}} | |
( E 2 D , G 2 D ) {\displaystyle (E_{\mathrm {2D} },\,G_{\mathrm {2D} })} | E 2 D G 2 D 4 G 2 D − E 2 D {\displaystyle {\tfrac {E_{\mathrm {2D} }G_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} | | 2 G 2 D ( E 2 D − 2 G 2 D ) 4 G 2 D − E 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} | | E 2 D 2 G 2 D − 1 {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1} | 4 G 2 D 2 4 G 2 D − E 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} | |
( E 2 D , ν 2 D ) {\displaystyle (E_{\mathrm {2D} },\,\nu _{\mathrm {2D} })} | E 2 D 2 ( 1 − ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}} | | E 2 D ν 2 D ( 1 + ν 2 D ) ( 1 − ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}} | E 2 D 2 ( 1 + ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}} | | E 2 D ( 1 + ν 2 D ) ( 1 − ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}} | |
( λ 2 D , G 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },\,G_{\mathrm {2D} })} | λ 2 D + G 2 D {\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }} | 4 G 2 D ( λ 2 D + G 2 D ) λ 2 D + 2 G 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}} | | | λ 2 D λ 2 D + 2 G 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}} | λ 2 D + 2 G 2 D {\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }\,} | |
( λ 2 D , ν 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },\,\nu _{\mathrm {2D} })} | λ 2 D ( 1 + ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}} | λ 2 D ( 1 + ν 2 D ) ( 1 − ν 2 D ) ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}} | | λ 2 D ( 1 − ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}} | | λ 2 D ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}} | Cannot be used when ν 2 D = 0 ⇔ λ 2 D = 0 {\displaystyle \nu _{\mathrm {2D} }=0\Leftrightarrow \lambda _{\mathrm {2D} }=0} |
( G 2 D , ν 2 D ) {\displaystyle (G_{\mathrm {2D} },\,\nu _{\mathrm {2D} })} | G 2 D ( 1 + ν 2 D ) 1 − ν 2 D {\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}} | 2 G 2 D ( 1 + ν 2 D ) {\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,} | 2 G 2 D ν 2 D 1 − ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}} | | | 2 G 2 D 1 − ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}} | |
( G 2 D , M 2 D ) {\displaystyle (G_{\mathrm {2D} },\,M_{\mathrm {2D} })} | M 2 D − G 2 D {\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }} | 4 G 2 D ( M 2 D − G 2 D ) M 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}} | M 2 D − 2 G 2 D {\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }\,} | | M 2 D − 2 G 2 D M 2 D {\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}} | | |