The model is derived by modeling an electron orbiting a massive, stationary nucleus as a spring-mass-damper system.345 The electron is modeled to be connected to the nucleus via a hypothetical spring and its motion is damped by via a hypothetical damper. The damping force ensures that the oscillator's response is finite at its resonance frequency. For a time-harmonic driving force which originates from the electric field, Newton's second law can be applied to the electron to obtain the motion of the electron and expressions for the dipole moment, polarization, susceptibility, and dielectric function.6
Equation of motion for electron oscillator: F net = F damping + F spring + F driving = m d 2 r d t 2 − m τ d r d t − k r − e E ( t ) = m d 2 r d t 2 d 2 r d t 2 + 1 τ d r d t + ω 0 2 r = − e m E ( t ) {\displaystyle {\begin{aligned}\mathbf {F} _{\text{net}}=\mathbf {F} _{\text{damping}}+\mathbf {F} _{\text{spring}}+\mathbf {F} _{\text{driving}}&=m{\frac {\mathrm {d} ^{2}\mathbf {r} }{\mathrm {d} t^{2}}}\\[1ex]{\frac {-m}{\tau }}{\frac {\mathrm {d} \mathbf {r} }{\mathrm {d} t}}-k\mathbf {r} -{e}\mathbf {E} (t)&=m{\frac {\mathrm {d} ^{2}\mathbf {r} }{\mathrm {d} t^{2}}}\\[1ex]{\frac {\mathrm {d} ^{2}\mathbf {r} }{\mathrm {d} t^{2}}}+{\frac {1}{\tau }}{\frac {\mathrm {d} \mathbf {r} }{\mathrm {d} t}}+\omega _{0}^{2}\mathbf {r} \;&=\;{\frac {-e}{m}}\mathbf {E} (t)\end{aligned}}}
where
For time-harmonic fields: E ( t ) = E 0 e − i ω t {\displaystyle \mathbf {E} (t)=\mathbf {E} _{0}e^{-i\omega t}} r ( t ) = r 0 e − i ω t {\displaystyle \mathbf {r} (t)=\mathbf {r} _{0}e^{-i\omega t}}
The stationary solution of this equation of motion is: r ( ω ) = − e m ω 0 2 − ω 2 − i ω / τ E ( ω ) {\displaystyle \mathbf {r} (\omega )={\frac {\frac {-e}{m}}{\omega _{0}^{2}-\omega ^{2}-i\omega /\tau }}\mathbf {E} (\omega )}
The fact that the above solution is complex means there is a time delay (phase shift) between the driving electric field and the response of the electron's motion.7
The displacement, r {\displaystyle \mathbf {r} } , induces a dipole moment, p {\displaystyle \mathbf {p} } , given by p ( ω ) = − e r ( ω ) = α ^ ( ω ) E ( ω ) . {\displaystyle \mathbf {p} (\omega )=-e\mathbf {r} (\omega )={\hat {\alpha }}(\omega )\mathbf {E} (\omega ).}
α ^ ( ω ) {\displaystyle {\hat {\alpha }}(\omega )} is the polarizability of single oscillator, given by α ^ ( ω ) = e 2 m 1 ( ω 0 2 − ω 2 ) − i ω / τ . {\displaystyle {\hat {\alpha }}(\omega )={\frac {e^{2}}{m}}{\frac {1}{(\omega _{0}^{2}-\omega ^{2})-i\omega /\tau }}.}
Three distinct scattering regimes can be interpreted corresponding to the dominant denominator term in the dipole moment:8
The polarization P {\displaystyle \mathbf {P} } is the dipole moment per unit volume. For macroscopic material properties N is the density of charges (electrons) per unit volume. Considering that each electron is acting with the same dipole moment we have the polarization as below P = N p = N α ^ ( ω ) E ( ω ) . {\displaystyle \mathbf {P} =N\mathbf {p} =N{\hat {\alpha }}(\omega )\mathbf {E} (\omega ).}
The electric displacement D {\displaystyle \mathbf {D} } is related to the polarization density P {\displaystyle \mathbf {P} } by D = ε ^ E = E + 4 π P = ( 1 + 4 π N α ^ ) E {\displaystyle \mathbf {D} ={\hat {\varepsilon }}\mathbf {E} =\mathbf {E} +4\pi \mathbf {P} =(1+4\pi N{\hat {\alpha }})\mathbf {E} }
The complex dielectric function is given the following (in Gaussian units): ε ^ ( ω ) = 1 + 4 π N e 2 m 1 ( ω 0 2 − ω 2 ) − i ω / τ {\displaystyle {\hat {\varepsilon }}(\omega )=1+{\frac {4\pi Ne^{2}}{m}}{\frac {1}{(\omega _{0}^{2}-\omega ^{2})-i\omega /\tau }}} where 4 π N e 2 / m = ω p 2 {\displaystyle 4\pi Ne^{2}/m=\omega _{p}^{2}} and ω p {\displaystyle \omega _{p}} is the so-called plasma frequency.
In practice, the model is commonly modified to account for multiple absorption mechanisms present in a medium. The modified version is given by9 ε ^ ( ω ) = ε ∞ + ∑ j χ j L ( ω ; ω 0 , j ) {\displaystyle {\hat {\varepsilon }}(\omega )=\varepsilon _{\infty }+\sum _{j}\chi _{j}^{L}(\omega ;\omega _{0,j})} where χ j L ( ω ; ω 0 , j ) = s j ω 0 , j 2 − ω 2 − i Γ j ω {\displaystyle \chi _{j}^{L}(\omega ;\omega _{0,j})={\frac {s_{j}}{\omega _{0,j}^{2}-\omega ^{2}-i\Gamma _{j}\omega }}} and
Separating the real and imaginary components, ε ^ ( ω ) = ε 1 ( ω ) + i ε 2 ( ω ) = [ ε ∞ + ∑ j s j ( ω 0 , j 2 − ω 2 ) ( ω 0 , j 2 − ω 2 ) 2 + ( Γ j ω ) 2 ] + i [ ∑ j s j ( Γ j ω ) ( ω 0 , j 2 − ω 2 ) 2 + ( Γ j ω ) 2 ] {\displaystyle {\hat {\varepsilon }}(\omega )=\varepsilon _{1}(\omega )+i\varepsilon _{2}(\omega )=\left[\varepsilon _{\infty }+\sum _{j}{\frac {s_{j}(\omega _{0,j}^{2}-\omega ^{2})}{\left(\omega _{0,j}^{2}-\omega ^{2}\right)^{2}+\left(\Gamma _{j}\omega \right)^{2}}}\right]+i\left[\sum _{j}{\frac {s_{j}(\Gamma _{j}\omega )}{\left(\omega _{0,j}^{2}-\omega ^{2}\right)^{2}+\left(\Gamma _{j}\omega \right)^{2}}}\right]}
The complex optical conductivity in general is related to the complex dielectric function (in Gaussian units) as σ ^ ( ω ) = ω 4 π i ( ε ^ ( ω ) − 1 ) {\displaystyle {\hat {\sigma }}(\omega )={\frac {\omega }{4\pi i}}\left({\hat {\varepsilon }}(\omega )-1\right)}
Substituting the formula of ε ^ ( ω ) {\displaystyle {\hat {\varepsilon }}(\omega )} in the equation above we obtain σ ^ ( ω ) = N e 2 m ω ω / τ + i ( ω 0 2 − ω 2 ) {\displaystyle {\hat {\sigma }}(\omega )={\frac {Ne^{2}}{m}}{\frac {\omega }{\omega /\tau +i\left(\omega _{0}^{2}-\omega ^{2}\right)}}}
Separating the real and imaginary components, σ ^ ( ω ) = σ 1 ( ω ) + i σ 2 ( ω ) = N e 2 m ω 2 τ ( ω 0 2 − ω 2 ) 2 + ω 2 / τ 2 − i N e 2 m ( ω 0 2 − ω 2 ) ω ( ω 0 2 − ω 2 ) 2 + ω 2 / τ 2 {\displaystyle {\hat {\sigma }}(\omega )=\sigma _{1}(\omega )+i\sigma _{2}(\omega )={\frac {Ne^{2}}{m}}{\frac {\frac {\omega ^{2}}{\tau }}{\left(\omega _{0}^{2}-\omega ^{2}\right)^{2}+\omega ^{2}/\tau ^{2}}}-i{\frac {Ne^{2}}{m}}{\frac {\left(\omega _{0}^{2}-\omega ^{2}\right)\omega }{\left(\omega _{0}^{2}-\omega ^{2}\right)^{2}+\omega ^{2}/\tau ^{2}}}}
Lorentz, Hendrik Antoon (1909). The theory of electrons and its applications to the phenomena of light and radiant heat. Vol. Bd. XXIX, Bd. 29. New York; Leipzig: B.G. Teubner. OCLC 535812. /wiki/OCLC_(identifier) ↩
Dressel, Martin; Grüner, George (2002). "Semiconductors". Electrodynamics of Solids: Optical Properties of Electrons in Matter. Cambridge. pp. 136–172. doi:10.1017/CBO9780511606168.008. ISBN 9780521592536.{{cite book}}: CS1 maint: location missing publisher (link) 9780521592536 ↩
Almog, I. F.; Bradley, M. S.; Bulovic, V. (2011). "The Lorentz Oscillator and its Applications" (PDF). Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Retrieved 2021-11-24. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-007-electromagnetic-energy-from-motors-to-lasers-spring-2011/readings/MIT6_007S11_lorentz.pdf ↩
Colton, John (2020). "Lorentz Oscillator Model" (PDF). Brigham Young University, Department of Physics & Astronomy. Brigham Young University. Retrieved 2021-11-18. https://physics.byu.edu/faculty/colton/docs/phy442-resources/Lorentz-oscillator-model.pdf ↩
Patel, Adam (2021). "Thomson and collisional regimes of in-phase coherent microwave scattering off gaseous microplasmas". Scientific Reports. 11 (1): 23389. arXiv:2106.02457. Bibcode:2021NatSR..1123389P. doi:10.1038/s41598-021-02500-y. PMC 8642454. PMID 34862396. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642454 ↩
Zhang, Z. M.; Lefever-Button, G.; Powell, F. R. (1998). "Infrared Refractive Index and Extinction Coefficient of Polyimide Films". International Journal of Thermophysics. 19 (3): 905–916. doi:10.1023/A:1022655309574. S2CID 116271335. Retrieved 2021-11-24. https://doi.org/10.1023/A:1022655309574 ↩