Quantum cryptography is a general subject that covers a broad range of cryptographic practices and protocols. Some of the most notable applications and protocols are discussed below.
The security of quantum key distribution can be proven mathematically without imposing any restrictions on the abilities of an eavesdropper, something not possible with classical key distribution. This is usually described as "unconditional security", although there are some minimal assumptions required, including that the laws of quantum mechanics apply and that Alice and Bob are able to authenticate each other, i.e. Eve should not be able to impersonate Alice or Bob as otherwise a man-in-the-middle attack would be possible.
While QKD is secure, its practical application faces some challenges. There are in fact limitations for the key generation rate at increasing transmission distances. Recent studies have allowed important advancements in this regard. In 2018, the protocol of twin-field QKD was proposed as a mechanism to overcome the limits of lossy communication. The rate of the twin field protocol was shown to overcome the secret key-agreement capacity of the lossy communication channel, known as repeater-less PLOB bound, at 340 km of optical fiber; its ideal rate surpasses this bound already at 200 km and follows the rate-loss scaling of the higher repeater-assisted secret key-agreement capacity (see figure 1 of and figure 11 of for more details). The protocol suggests that optimal key rates are achievable on "550 kilometers of standard optical fibre", which is already commonly used in communications today. The theoretical result was confirmed in the first experimental demonstration of QKD beyond the PLOB bound which has been characterized as the first effective quantum repeater. Notable developments in terms of achieving high rates at long distances are the sending-not-sending (SNS) version of the TF-QKD protocol. and the no-phase-postselected twin-field scheme.
In mistrustful cryptography the participating parties do not trust each other. For example, Alice and Bob collaborate to perform some computation where both parties enter some private inputs. But Alice does not trust Bob and Bob does not trust Alice. Thus, a secure implementation of a cryptographic task requires that after completing the computation, Alice can be guaranteed that Bob has not cheated and Bob can be guaranteed that Alice has not cheated either. Examples of tasks in mistrustful cryptography are commitment schemes and secure computations, the latter including the further examples of coin flipping and oblivious transfer. Key distribution does not belong to the area of mistrustful cryptography. Mistrustful quantum cryptography studies the area of mistrustful cryptography using quantum systems.
Cheating occurs when one player attempts to influence, or increase the probability of a particular outcome. The protocol discourages some forms of cheating; for example, Alice could cheat at step 4 by claiming that Bob incorrectly guessed her initial basis when he guessed correctly, but Alice would then need to generate a new string of qubits that perfectly correlates with what Bob measured in the opposite table. Her chance of generating a matching string of qubits will decrease exponentially with the number of qubits sent, and if Bob notes a mismatch, he will know she was lying. Alice could also generate a string of photons using a mixture of states, but Bob would easily see that her string will correlate partially (but not fully) with both sides of the table, and know she cheated in the process. There is also an inherent flaw that comes with current quantum devices. Errors and lost qubits will affect Bob's measurements, resulting in holes in Bob's measurement table. Significant losses in measurement will affect Bob's ability to verify Alice's qubit sequence in step 5.
One theoretically surefire way for Alice to cheat is to utilize the Einstein-Podolsky-Rosen (EPR) paradox. Two photons in an EPR pair are anticorrelated; that is, they will always be found to have opposite polarizations, provided that they are measured in the same basis. Alice could generate a string of EPR pairs, sending one photon per pair to Bob and storing the other herself. When Bob states his guess, she could measure her EPR pair photons in the opposite basis and obtain a perfect correlation to Bob's opposite table. Bob would never know she cheated. However, this requires capabilities that quantum technology currently does not possess, making it impossible to do in practice. To successfully execute this, Alice would need to be able to store all the photons for a significant amount of time as well as measure them with near perfect efficiency. This is because any photon lost in storage or in measurement would result in a hole in her string that she would have to fill by guessing. The more guesses she has to make, the more she risks detection by Bob for cheating.
In addition to quantum coin-flipping, quantum commitment protocols are implemented when distrustful parties are involved. A commitment scheme allows a party Alice to fix a certain value (to "commit") in such a way that Alice cannot change that value while at the same time ensuring that the recipient Bob cannot learn anything about that value until Alice reveals it. Such commitment schemes are commonly used in cryptographic protocols (e.g. Quantum coin flipping, Zero-knowledge proof, secure two-party computation, and Oblivious transfer).
In the quantum setting, they would be particularly useful: Crépeau and Kilian showed that from a commitment and a quantum channel, one can construct an unconditionally secure protocol for performing so-called oblivious transfer. Oblivious transfer, on the other hand, had been shown by Kilian to allow implementation of almost any distributed computation in a secure way (so-called secure multi-party computation). (Note: The results by Crépeau and Kilian together do not directly imply that given a commitment and a quantum channel one can perform secure multi-party computation. This is because the results do not guarantee "composability", that is, when plugging them together, one might lose security.)
Early quantum commitment protocols were shown to be flawed. In fact, Mayers showed that (unconditionally secure) quantum commitment is impossible: a computationally unlimited attacker can break any quantum commitment protocol.
Yet, the result by Mayers does not preclude the possibility of constructing quantum commitment protocols (and thus secure multi-party computation protocols) under assumptions that are much weaker than the assumptions needed for commitment protocols that do not use quantum communication. The bounded quantum storage model described below is an example for a setting in which quantum communication can be used to construct commitment protocols. A breakthrough in November 2013 offers "unconditional" security of information by harnessing quantum theory and relativity, which has been successfully demonstrated on a global scale for the first time. More recently, Wang et al., proposed another commitment scheme in which the "unconditional hiding" is perfect.
In the BQSM, one can construct commitment and oblivious transfer protocols. The underlying idea is the following: The protocol parties exchange more than Q quantum bits (qubits). Since even a dishonest party cannot store all that information (the quantum memory of the adversary is limited to Q qubits), a large part of the data will have to be either measured or discarded. Forcing dishonest parties to measure a large part of the data allows the protocol to circumvent the impossibility result, commitment and oblivious transfer protocols can now be implemented.
The protocols in the BQSM presented by Damgård, Fehr, Salvail, and Schaffner do not assume that honest protocol participants store any quantum information; the technical requirements are similar to those in quantum key distribution protocols. These protocols can thus, at least in principle, be realized with today's technology. The communication complexity is only a constant factor larger than the bound Q on the adversary's quantum memory.
The advantage of the BQSM is that the assumption that the adversary's quantum memory is limited is quite realistic. With today's technology, storing even a single qubit reliably over a sufficiently long time is difficult. (What "sufficiently long" means depends on the protocol details. By introducing an artificial pause in the protocol, the amount of time over which the adversary needs to store quantum data can be made arbitrarily large.)
In the classical setting, similar results can be achieved when assuming a bound on the amount of classical (non-quantum) data that the adversary can store. It was proven, however, that in this model also the honest parties have to use a large amount of memory (namely the square-root of the adversary's memory bound). This makes these protocols impractical for realistic memory bounds. (Note that with today's technology such as hard disks, an adversary can cheaply store large amounts of classical data.)
Under the name of 'quantum tagging', the first position-based quantum schemes have been investigated in 2002 by Kent. A US-patent was granted in 2006. The notion of using quantum effects for location verification first appeared in the scientific literature in 2010. After several other quantum protocols for position verification have been suggested in 2010, Buhrman et al. claimed a general impossibility result: using an enormous amount of quantum entanglement (they use a doubly exponential number of EPR pairs, in the number of qubits the honest player operates on), colluding adversaries are always able to make it look to the verifiers as if they were at the claimed position. However, this result does not exclude the possibility of practical schemes in the bounded- or noisy-quantum-storage model (see above). Later Beigi and König improved the amount of EPR pairs needed in the general attack against position-verification protocols to exponential. They also showed that a particular protocol remains secure against adversaries who controls only a linear amount of EPR pairs. It is argued in that due to time-energy coupling the possibility of formal unconditional location verification via quantum effects remains an open problem. The study of position-based quantum cryptography also has connections with the protocol of port-based quantum teleportation, which is a more advanced version of quantum teleportation, where many EPR pairs are simultaneously used as ports.
A quantum cryptographic protocol is device-independent if its security does not rely on trusting that the quantum devices used are truthful. Thus the security analysis of such a protocol needs to consider scenarios of imperfect or even malicious devices. Mayers and Yao proposed the idea of designing quantum protocols using "self-testing" quantum apparatus, the internal operations of which can be uniquely determined by their input-output statistics. Subsequently, Roger Colbeck in his Thesis proposed the use of Bell tests for checking the honesty of the devices. Since then, several problems have been shown to admit unconditional secure and device-independent protocols, even when the actual devices performing the Bell test are substantially "noisy", i.e., far from being ideal. These problems include
quantum key distribution, randomness expansion, and randomness amplification.
In 2018, theoretical studies performed by Arnon- Friedman et al. suggest that exploiting a property of entropy that is later referred to as "Entropy Accumulation Theorem (EAT)", an extension of Asymptotic equipartition property, can guarantee the security of a device independent protocol.
There is also research into how existing cryptographic techniques have to be modified to be able to cope with quantum adversaries. For example, when trying to develop zero-knowledge proof systems that are secure against quantum adversaries, new techniques need to be used: In a classical setting, the analysis of a zero-knowledge proof system usually involves "rewinding", a technique that makes it necessary to copy the internal state of the adversary. In a quantum setting, copying a state is not always possible (no-cloning theorem); a variant of the rewinding technique has to be used.
Post quantum algorithms are also called "quantum resistant", because – unlike quantum key distribution – it is not known or provable that there will not be potential future quantum attacks against them. Even though they may possibly be vulnerable to quantum attacks in the future, the NSA is announcing plans to transition to quantum resistant algorithms. The National Institute of Standards and Technology (NIST) believes that it is time to think of quantum-safe primitives.
So far, quantum cryptography has been mainly identified with the development of quantum key distribution protocols. Symmetric cryptosystems with keys that have been distributed by means of quantum key distribution become inefficient for large networks (many users), because of the necessity for the establishment and the manipulation of many pairwise secret keys (the so-called "key-management problem"). Moreover, this distribution alone does not address many other cryptographic tasks and functions, which are of vital importance in everyday life. Kak's three-stage protocol has been proposed as a method for secure communication that is entirely quantum unlike quantum key distribution, in which the cryptographic transformation uses classical algorithms
Besides quantum commitment and oblivious transfer (discussed above), research on quantum cryptography beyond key distribution revolves around quantum message authentication, quantum digital signatures, quantum one-way functions and public-key encryption, quantum key-exchange, quantum fingerprinting and entity authentication (for example, see Quantum readout of PUFs), etc.
H. P. Yuen presented Y-00 as a stream cipher using quantum noise around 2000 and applied it for the U.S. Defense Advanced Research Projects Agency (DARPA) High-Speed and High-Capacity Quantum Cryptography Project as an alternative to quantum key distribution.
The review paper summarizes it well.
Unlike quantum key distribution protocols, the main purpose of Y-00 is to transmit a message without eavesdrop-monitoring, not to distribute a key. Therefore, privacy amplification may be used only for key distributions. Currently, research is being conducted mainly in Japan and China: e.g.
The principle of operation is as follows. First, legitimate users share a key and change it to a pseudo-random keystream using the same pseudo-random number generator. Then, the legitimate parties can perform conventional optical communications based on the shared key by transforming it appropriately. For attackers who do not share the key, the wire-tap channel model of Aaron D. Wyner is implemented. The legitimate users' advantage based on the shared key is called "advantage creation". The goal is to achieve longer covert communication than the information-theoretic security limit (one-time pad) set by Shannon. The source of the noise in the above wire-tap channel is the uncertainty principle of the electromagnetic field itself, which is a theoretical consequence of the theory of laser described by Roy J. Glauber and E. C. George Sudarshan (coherent state). Therefore, existing optical communication technologies are sufficient for implementation that some reviews describes: e.g.
Furthermore, since it uses ordinary communication laser light, it is compatible with existing communication infrastructure and can be used for high-speed
and long-distance communication and routing.
Although the main purpose of the protocol is to transmit the message, key distribution is possible by simply replacing the message with a key. Since it is a symmetric key cipher, it must share the initial key previously; however, a method of the initial key agreement was also proposed.
The theoretical basis for quantum key distribution assumes the use of single-photon sources. However, such sources are difficult to construct, and most real-world quantum cryptography systems use faint laser sources as a medium for information transfer. These multi-photon sources open the possibility for eavesdropper attacks, particularly a photon splitting attack. An eavesdropper, Eve, can split the multi-photon source and retain one copy for herself. The other photons are then transmitted to Bob without any measurement or trace that Eve captured a copy of the data. Scientists believe they can retain security with a multi-photon source by using decoy states that test for the presence of an eavesdropper. However, in 2016, scientists developed a near perfect single photon source and estimate that one could be developed in the near future.
In practice, multiple single-photon detectors are used in quantum key distribution devices, one for Alice and one for Bob. These photodetectors are tuned to detect an incoming photon during a short window of only a few nanoseconds. Due to manufacturing differences between the two detectors, their respective detection windows will be shifted by some finite amount. An eavesdropper, Eve, can take advantage of this detector inefficiency by measuring Alice's qubit and sending a "fake state" to Bob. Eve first captures the photon sent by Alice and then generates another photon to send to Bob. Eve manipulates the phase and timing of the "faked" photon in a way that prevents Bob from detecting the presence of an eavesdropper. The only way to eliminate this vulnerability is to eliminate differences in photodetector efficiency, which is difficult to do given finite manufacturing tolerances that cause optical path length differences, wire length differences, and other defects.
Because of the practical problems with quantum key distribution, some governmental organizations recommend the use of post-quantum cryptography (quantum resistant cryptography) instead. For example, the US National Security Agency, European Union Agency for Cybersecurity of EU (ENISA), UK's National Cyber Security Centre, French Secretariat for Defense and Security (ANSSI), and German Federal Office for Information Security (BSI) recommend post-quantum cryptography.
In response to problem 1 above, attempts to deliver authentication keys using post-quantum cryptography (or quantum-resistant cryptography) have been proposed worldwide. On the other hand, quantum-resistant cryptography is cryptography belonging to the class of computational security. In 2015, a research result was already published that "sufficient care must be taken in implementation to achieve information-theoretic security for the system as a whole when authentication keys that are not information-theoretic secure are used" (if the authentication key is not information-theoretically secure, an attacker can break it to bring all classical and quantum communications under control and relay them to launch a man-in-the-middle attack).
Ericsson, a private company, also cites and points out the above problems and then presents a report that it may not be able to support the zero trust security model, which is a recent trend in network security technology.
Quantum cryptography, specifically the BB84 protocol, has become an important topic in physics and computer science education. The challenge of teaching quantum cryptography lies in the technical requirements and the conceptual complexity of quantum mechanics. However, simplified experimental setups for educational purposes are becoming more common, allowing undergraduate students to engage with the core principles of quantum key distribution (QKD) without requiring advanced quantum technology.
Gisin, Nicolas; Ribordy, Grégoire; Tittel, Wolfgang; Zbinden, Hugo (2002). "Quantum cryptography". Reviews of Modern Physics. 74 (1): 145–195. arXiv:quant-ph/0101098. Bibcode:2002RvMP...74..145G. doi:10.1103/RevModPhys.74.145. S2CID 6979295. https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.74.145
Pirandola, S.; Andersen, U. L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; Pereira, J. L.; et al. (2020). "Advances in quantum cryptography". Advances in Optics and Photonics. 12 (4): 1012–1236. arXiv:1906.01645. Bibcode:2020AdOP...12.1012P. doi:10.1364/AOP.361502. S2CID 174799187. https://www.osapublishing.org/aop/abstract.cfm?uri=aop-12-4-1012
Bennett, Charles H.; et al. (1992). "Experimental quantum cryptography". Journal of Cryptology. 5 (1): 3–28. doi:10.1007/bf00191318. S2CID 206771454. https://doi.org/10.1007%2Fbf00191318
Wiesner, Stephen (1983). "Conjugate coding". ACM SIGACT News. 15 (1): 78–88. doi:10.1145/1008908.1008920. S2CID 207155055. /wiki/Doi_(identifier)
Bennett, Charles H.; et al. (1992). "Experimental quantum cryptography". Journal of Cryptology. 5 (1): 3–28. doi:10.1007/bf00191318. S2CID 206771454. https://doi.org/10.1007%2Fbf00191318
Bennett, Charles H.; Brassard, Gilles (1984). "Quantum cryptography: Public key distribution and coin tossing". Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. 175: 8.
"What Is Quantum Cryptography? | IBM". www.ibm.com. 29 November 2023. Retrieved 25 September 2024. https://www.ibm.com/topics/quantum-cryptography
Ekert, A (1991). "Quantum cryptography based on Bell's theorem". Physical Review Letters. 67 (6): 661–663. Bibcode:1991PhRvL..67..661E. doi:10.1103/physrevlett.67.661. PMID 10044956. S2CID 27683254. /wiki/Bibcode_(identifier)
"Crypto-gram: December 15, 2003 – Schneier on Security". www.schneier.com. Retrieved 13 October 2020. https://www.schneier.com/crypto-gram/archives/2003/1215.html
Stebila, Douglas; Mosca, Michele; Lütkenhaus, Norbert (2010), Sergienko, Alexander; Pascazio, Saverio; Villoresi, Paolo (eds.), "The Case for Quantum Key Distribution", Quantum Communication and Quantum Networking, vol. 36, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 283–296, arXiv:0902.2839, Bibcode:2010qcqn.book..283S, doi:10.1007/978-3-642-11731-2_35, ISBN 978-3-642-11730-5, S2CID 457259, retrieved 13 October 2020 978-3-642-11730-5
Pirandola, S.; Andersen, U. L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; Pereira, J. L.; et al. (2020). "Advances in quantum cryptography". Advances in Optics and Photonics. 12 (4): 1012–1236. arXiv:1906.01645. Bibcode:2020AdOP...12.1012P. doi:10.1364/AOP.361502. S2CID 174799187. https://www.osapublishing.org/aop/abstract.cfm?uri=aop-12-4-1012
Stebila, Douglas; Mosca, Michele; Lütkenhaus, Norbert (2010), Sergienko, Alexander; Pascazio, Saverio; Villoresi, Paolo (eds.), "The Case for Quantum Key Distribution", Quantum Communication and Quantum Networking, vol. 36, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 283–296, arXiv:0902.2839, Bibcode:2010qcqn.book..283S, doi:10.1007/978-3-642-11731-2_35, ISBN 978-3-642-11730-5, S2CID 457259, retrieved 13 October 2020 978-3-642-11730-5
Stebila, Douglas; Mosca, Michele; Lütkenhaus, Norbert (2010), Sergienko, Alexander; Pascazio, Saverio; Villoresi, Paolo (eds.), "The Case for Quantum Key Distribution", Quantum Communication and Quantum Networking, vol. 36, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 283–296, arXiv:0902.2839, Bibcode:2010qcqn.book..283S, doi:10.1007/978-3-642-11731-2_35, ISBN 978-3-642-11730-5, S2CID 457259, retrieved 13 October 2020 978-3-642-11730-5
"FastStats". www.cdc.gov. 4 August 2020. Retrieved 13 October 2020. https://www.cdc.gov/nchs/fastats/electronic-medical-records.htm
Rights (OCR), Office for Civil (7 May 2008). "Privacy". HHS.gov. Retrieved 13 October 2020. https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
Stebila, Douglas; Mosca, Michele; Lütkenhaus, Norbert (2010), Sergienko, Alexander; Pascazio, Saverio; Villoresi, Paolo (eds.), "The Case for Quantum Key Distribution", Quantum Communication and Quantum Networking, vol. 36, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 283–296, arXiv:0902.2839, Bibcode:2010qcqn.book..283S, doi:10.1007/978-3-642-11731-2_35, ISBN 978-3-642-11730-5, S2CID 457259, retrieved 13 October 2020 978-3-642-11730-5
Stebila, Douglas; Mosca, Michele; Lütkenhaus, Norbert (2010), Sergienko, Alexander; Pascazio, Saverio; Villoresi, Paolo (eds.), "The Case for Quantum Key Distribution", Quantum Communication and Quantum Networking, vol. 36, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 283–296, arXiv:0902.2839, Bibcode:2010qcqn.book..283S, doi:10.1007/978-3-642-11731-2_35, ISBN 978-3-642-11730-5, S2CID 457259, retrieved 13 October 2020 978-3-642-11730-5
Lo, Hoi-Kwong; Chau, H. F. (1999). "Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances" (PDF). Science. 283 (5410): 2050–2056. arXiv:quant-ph/9803006. Bibcode:1999Sci...283.2050L. doi:10.1126/science.283.5410.2050. JSTOR 2896688. PMID 10092221. S2CID 2948183. https://www.jstor.org/stable/pdf/2896688.pdf
Lo, Hoi-Kwong; Chau, H. F. (1999). "Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances" (PDF). Science. 283 (5410): 2050–2056. arXiv:quant-ph/9803006. Bibcode:1999Sci...283.2050L. doi:10.1126/science.283.5410.2050. JSTOR 2896688. PMID 10092221. S2CID 2948183. https://www.jstor.org/stable/pdf/2896688.pdf
Pirandola, S.; García-Patrón, R.; Braunstein, S. L.; Lloyd, S. (2009). "Direct and Reverse Secret-Key Capacities of a Quantum Channel". Physical Review Letters. 102 (5): 050503. arXiv:0809.3273. Bibcode:2009PhRvL.102e0503P. doi:10.1103/PhysRevLett.102.050503. PMID 19257494. S2CID 665165. /wiki/ArXiv_(identifier)
Takeoka, Masahiro; Guha, Saikat; Wilde, Mark M. (2014). "Fundamental rate-loss tradeoff for optical quantum key distribution". Nature Communications. 5: 5235. arXiv:1504.06390. Bibcode:2014NatCo...5.5235T. doi:10.1038/ncomms6235. PMID 25341406. S2CID 20580923. /wiki/ArXiv_(identifier)
Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. (2017). "Fundamental limits of repeaterless quantum communications". Nature Communications. 8: 15043. arXiv:1510.08863. Bibcode:2017NatCo...815043P. doi:10.1038/ncomms15043. PMC 5414096. PMID 28443624. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414096
Shields, A. J.; Dynes, J. F.; Yuan, Z. L.; Lucamarini, M. (May 2018). "Overcoming the rate–distance limit of quantum key distribution without quantum repeaters". Nature. 557 (7705): 400–403. arXiv:1811.06826. Bibcode:2018Natur.557..400L. doi:10.1038/s41586-018-0066-6. ISSN 1476-4687. PMID 29720656. S2CID 21698666. /wiki/ArXiv_(identifier)
Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. (2017). "Fundamental limits of repeaterless quantum communications". Nature Communications. 8: 15043. arXiv:1510.08863. Bibcode:2017NatCo...815043P. doi:10.1038/ncomms15043. PMC 5414096. PMID 28443624. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414096
Pirandola, S. (2019). "End-to-end capacities of a quantum communication network". Communications Physics. 2 (1): 51. arXiv:1601.00966. Bibcode:2019CmPhy...2...51P. doi:10.1038/s42005-019-0147-3. S2CID 170078611. /wiki/ArXiv_(identifier)
Shields, A. J.; Dynes, J. F.; Yuan, Z. L.; Lucamarini, M. (May 2018). "Overcoming the rate–distance limit of quantum key distribution without quantum repeaters". Nature. 557 (7705): 400–403. arXiv:1811.06826. Bibcode:2018Natur.557..400L. doi:10.1038/s41586-018-0066-6. ISSN 1476-4687. PMID 29720656. S2CID 21698666. /wiki/ArXiv_(identifier)
Pirandola, S.; Andersen, U. L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; Pereira, J. L.; et al. (2020). "Advances in quantum cryptography". Advances in Optics and Photonics. 12 (4): 1012–1236. arXiv:1906.01645. Bibcode:2020AdOP...12.1012P. doi:10.1364/AOP.361502. S2CID 174799187. https://www.osapublishing.org/aop/abstract.cfm?uri=aop-12-4-1012
Minder, Mariella; Pittaluga, Mirko; Roberts, George; Lucamarini, Marco; Dynes, James F.; Yuan, Zhiliang; Shields, Andrew J. (February 2019). "Experimental quantum key distribution beyond the repeaterless secret key capacity". Nature Photonics. 13 (5): 334–338. arXiv:1910.01951. Bibcode:2019NaPho..13..334M. doi:10.1038/s41566-019-0377-7. S2CID 126717712. /wiki/ArXiv_(identifier)
Wang, Xiang-Bin; Yu, Zong-Wen; Hu, Xiao-Long (2018). "Twin-field quantum key distribution with large misalignment error". Physical Review A. 98 (6): 062323. arXiv:1805.09222. Bibcode:2018PhRvA..98f2323W. doi:10.1103/PhysRevA.98.062323. S2CID 51204011. /wiki/ArXiv_(identifier)
Xu, Hai; Yu, Zong-Wen; Hu, Xiao-Long; Wang, Xiang-Bin (2020). "Improved results for sending-or-not-sending twin-field quantun key distribution: breaking the absolute limit of repeaterless key rate". Physical Review A. 101: 042330. arXiv:1904.06331. doi:10.1103/PhysRevA.101.042330. S2CID 219003338. /wiki/ArXiv_(identifier)
Cui, C.; Yin, A.-Q.; Wang, R.; Chen, W.; Wang, S.; Guo, G.-C.; Han, Z.-F. (2019). "Twin-Field Quantum Key Distribution without Phase Postselection". Physical Review Applied. 11 (3): 034053. arXiv:1807.02334. Bibcode:2019PhRvP..11c4053C. doi:10.1103/PhysRevApplied.11.034053. S2CID 53624575. /wiki/ArXiv_(identifier)
Mayers, Dominic (1997). "Unconditionally Secure Quantum Bit Commitment is Impossible". Physical Review Letters. 78 (17): 3414–3417. arXiv:quant-ph/9605044. Bibcode:1997PhRvL..78.3414M. CiteSeerX 10.1.1.251.5550. doi:10.1103/PhysRevLett.78.3414. S2CID 14522232. /wiki/ArXiv_(identifier)
Lo, H.-K.; Chau, H. (1997). "Is Quantum Bit Commitment Really Possible?". Physical Review Letters. 78 (17): 3410. arXiv:quant-ph/9603004. Bibcode:1997PhRvL..78.3410L. doi:10.1103/PhysRevLett.78.3410. S2CID 3264257. /wiki/ArXiv_(identifier)
Lo, H.-K.; Chau, H. (1998). "Why quantum bit commitment and ideal quantum coin tossing are impossible". Physica D: Nonlinear Phenomena. 120 (1–2): 177–187. arXiv:quant-ph/9711065. Bibcode:1998PhyD..120..177L. doi:10.1016/S0167-2789(98)00053-0. S2CID 14378275. /wiki/ArXiv_(identifier)
Lo, H.-K. (1997). "Insecurity of quantum secure computations". Physical Review A. 56 (2): 1154–1162. arXiv:quant-ph/9611031. Bibcode:1997PhRvA..56.1154L. doi:10.1103/PhysRevA.56.1154. S2CID 17813922. /wiki/ArXiv_(identifier)
Kent, A. (1999). "Unconditionally Secure Bit Commitment". Physical Review Letters. 83 (7): 1447–1450. arXiv:quant-ph/9810068. Bibcode:1999PhRvL..83.1447K. doi:10.1103/PhysRevLett.83.1447. S2CID 8823466. /wiki/ArXiv_(identifier)
Kent, A. (1999). "Coin Tossing is Strictly Weaker than Bit Commitment". Physical Review Letters. 83 (25): 5382–5384. arXiv:quant-ph/9810067. Bibcode:1999PhRvL..83.5382K. doi:10.1103/PhysRevLett.83.5382. S2CID 16764407. /wiki/ArXiv_(identifier)
Stuart Mason Dambort (26 March 2014). "Heads or tails: Experimental quantum coin flipping cryptography performs better than classical protocols". Phys.org. Archived from the original on 25 March 2017. https://phys.org/news/2014-05-tails-experimental-quantum-coin-flipping.html
Doescher, C.; Keyl, M. (2002). "An introduction to quantum coin-tossing". arXiv:quant-ph/0206088. /wiki/ArXiv_(identifier)
Pappa, Anna; Jouguet, Paul; Lawson, Thomas; Chailloux, André; Legré, Matthieu; Trinkler, Patrick; Kerenidis, Iordanis; Diamanti, Eleni (24 April 2014). "Experimental plug and play quantum coin flipping". Nature Communications. 5 (1): 3717. arXiv:1306.3368. Bibcode:2014NatCo...5.3717P. doi:10.1038/ncomms4717. ISSN 2041-1723. PMID 24758868. S2CID 205325088. https://www.nature.com/articles/ncomms4717
Ambainis, Andris (1 March 2004). "A new protocol and lower bounds for quantum coin flipping". Journal of Computer and System Sciences. 68 (2): 398–416. arXiv:quant-ph/0204022. doi:10.1016/j.jcss.2003.07.010. ISSN 0022-0000. https://www.sciencedirect.com/science/article/pii/S0022000003001417
"Heads or tails: Experimental quantum coin flipping cryptography performs better than classical protocols". phys.org. Retrieved 18 October 2020. https://phys.org/news/2014-05-tails-experimental-quantum-coin-flipping.html
Bennett, Charles H.; Brassard, Gilles (4 December 2014). "Quantum cryptography: Public key distribution and coin tossing". Theoretical Computer Science. 560: 7–11. arXiv:2003.06557. doi:10.1016/j.tcs.2014.05.025. ISSN 0304-3975. S2CID 27022972. https://doi.org/10.1016%2Fj.tcs.2014.05.025
Bennett, Charles H.; Brassard, Gilles (4 December 2014). "Quantum cryptography: Public key distribution and coin tossing". Theoretical Computer Science. 560: 7–11. arXiv:2003.06557. doi:10.1016/j.tcs.2014.05.025. ISSN 0304-3975. S2CID 27022972. https://doi.org/10.1016%2Fj.tcs.2014.05.025
Bennett, Charles H.; Brassard, Gilles (4 December 2014). "Quantum cryptography: Public key distribution and coin tossing". Theoretical Computer Science. 560: 7–11. arXiv:2003.06557. doi:10.1016/j.tcs.2014.05.025. ISSN 0304-3975. S2CID 27022972. https://doi.org/10.1016%2Fj.tcs.2014.05.025
Bennett, Charles H.; Brassard, Gilles (4 December 2014). "Quantum cryptography: Public key distribution and coin tossing". Theoretical Computer Science. 560: 7–11. arXiv:2003.06557. doi:10.1016/j.tcs.2014.05.025. ISSN 0304-3975. S2CID 27022972. https://doi.org/10.1016%2Fj.tcs.2014.05.025
Crépeau, Claude; Joe, Kilian (1988). Achieving Oblivious Transfer Using Weakened Security Assumptions (Extended Abstract). FOCS 1988. IEEE. pp. 42–52.
Kilian, Joe (1988). Founding cryptography on oblivious transfer. STOC 1988. ACM. pp. 20–31. Archived from the original on 24 December 2004. https://web.archive.org/web/20041224234245/http://external.nj.nec.com/homepages/joe/collected-papers/Kil88b.ps
Crépeau, Claude; Joe, Kilian (1988). Achieving Oblivious Transfer Using Weakened Security Assumptions (Extended Abstract). FOCS 1988. IEEE. pp. 42–52.
Kilian, Joe (1988). Founding cryptography on oblivious transfer. STOC 1988. ACM. pp. 20–31. Archived from the original on 24 December 2004. https://web.archive.org/web/20041224234245/http://external.nj.nec.com/homepages/joe/collected-papers/Kil88b.ps
Brassard, Gilles; Claude, Crépeau; Jozsa, Richard; Langlois, Denis (1993). A Quantum Bit Commitment Scheme Provably Unbreakable by both Parties. FOCS 1993. IEEE. pp. 362–371.
Mayers, Dominic (1997). "Unconditionally Secure Quantum Bit Commitment is Impossible". Physical Review Letters. 78 (17): 3414–3417. arXiv:quant-ph/9605044. Bibcode:1997PhRvL..78.3414M. CiteSeerX 10.1.1.251.5550. doi:10.1103/PhysRevLett.78.3414. S2CID 14522232. /wiki/ArXiv_(identifier)
Lunghi, T.; Kaniewski, J.; Bussières, F.; Houlmann, R.; Tomamichel, M.; Kent, A.; Gisin, N.; Wehner, S.; Zbinden, H. (2013). "Experimental Bit Commitment Based on Quantum Communication and Special Relativity". Physical Review Letters. 111 (18): 180504. arXiv:1306.4801. Bibcode:2013PhRvL.111r0504L. doi:10.1103/PhysRevLett.111.180504. PMID 24237497. S2CID 15916727. /wiki/ArXiv_(identifier)
Wang, Ming-Qiang; Wang, Xue; Zhan, Tao (2018). "Unconditionally secure multi-party quantum commitment scheme". Quantum Information Processing. 17 (2): 31. Bibcode:2018QuIP...17...31W. doi:10.1007/s11128-017-1804-7. ISSN 1570-0755. S2CID 3603337. /wiki/Bibcode_(identifier)
Nikolopoulos, Georgios M. (2019). "Optical scheme for cryptographic commitments with physical unclonable keys". Optics Express. 27 (20): 29367–29379. arXiv:1909.13094. Bibcode:2019OExpr..2729367N. doi:10.1364/OE.27.029367. PMID 31684673. S2CID 203593129. Retrieved 13 November 2020. https://doi.org/10.1364/OE.27.029367
Damgård, Ivan; Fehr, Serge; Salvail, Louis; Schaffner, Christian (2005). Cryptography in the Bounded Quantum-Storage Model. FOCS 2005. IEEE. pp. 449–458. arXiv:quant-ph/0508222. /wiki/ArXiv_(identifier)
Mayers, Dominic (1997). "Unconditionally Secure Quantum Bit Commitment is Impossible". Physical Review Letters. 78 (17): 3414–3417. arXiv:quant-ph/9605044. Bibcode:1997PhRvL..78.3414M. CiteSeerX 10.1.1.251.5550. doi:10.1103/PhysRevLett.78.3414. S2CID 14522232. /wiki/ArXiv_(identifier)
Damgård, Ivan; Fehr, Serge; Salvail, Louis; Schaffner, Christian (2005). Cryptography in the Bounded Quantum-Storage Model. FOCS 2005. IEEE. pp. 449–458. arXiv:quant-ph/0508222. /wiki/ArXiv_(identifier)
Wehner, Stephanie; Schaffner, Christian; Terhal, Barbara M. (2008). "Cryptography from Noisy Storage". Physical Review Letters. 100 (22): 220502. arXiv:0711.2895. Bibcode:2008PhRvL.100v0502W. doi:10.1103/PhysRevLett.100.220502. PMID 18643410. S2CID 2974264. /wiki/ArXiv_(identifier)
Doescher, C.; Keyl, M.; Wullschleger, Jürg (2009). "Unconditional security from noisy quantum storage". IEEE Transactions on Information Theory. 58 (3): 1962–1984. arXiv:0906.1030. doi:10.1109/TIT.2011.2177772. S2CID 12500084. /wiki/ArXiv_(identifier)
Cachin, Christian; Crépeau, Claude; Marcil, Julien (1998). Oblivious Transfer with a Memory-Bounded Receiver. FOCS 1998. IEEE. pp. 493–502.
Dziembowski, Stefan; Ueli, Maurer (2004). On Generating the Initial Key in the Bounded-Storage Model (PDF). Eurocrypt 2004. LNCS. Vol. 3027. Springer. pp. 126–137. Archived (PDF) from the original on 11 March 2020. Retrieved 11 March 2020. https://www.crypto.ethz.ch/publications/files/DziMau04b.pdf
Chandran, Nishanth; Moriarty, Ryan; Goyal, Vipul; Ostrovsky, Rafail (2009). "Position-Based Cryptography". Cryptology ePrint Archive. http://eprint.iacr.org/2009/364
US 7075438, issued 11 July 2006
https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US7075438
Malaney, Robert (2010). "Location-dependent communications using quantum entanglement". Physical Review A. 81 (4): 042319. arXiv:1003.0949. Bibcode:2010PhRvA..81d2319M. doi:10.1103/PhysRevA.81.042319. S2CID 118704298. /wiki/ArXiv_(identifier)
Malaney, Robert (2010). "Quantum Location Verification in Noisy Channels". 2010 IEEE Global Telecommunications Conference GLOBECOM 2010. IEEE Global Telecommunications Conference GLOBECOM 2010. pp. 1–6. arXiv:1004.4689. doi:10.1109/GLOCOM.2010.5684009. ISBN 978-1-4244-5636-9. 978-1-4244-5636-9
Doescher, C.; Keyl, M.; Spiller, Timothy P. (2011). "Quantum Tagging: Authenticating Location via Quantum Information and Relativistic Signalling Constraints". Physical Review A. 84 (1): 012326. arXiv:1008.2147. Bibcode:2011PhRvA..84a2326K. doi:10.1103/PhysRevA.84.012326. S2CID 1042757. /wiki/ArXiv_(identifier)
Lau, Hoi-Kwan; Lo, Hoi-Kwong (2010). "Insecurity of position-based quantum-cryptography protocols against entanglement attacks". Physical Review A. 83 (1): 012322. arXiv:1009.2256. Bibcode:2011PhRvA..83a2322L. doi:10.1103/PhysRevA.83.012322. S2CID 17022643. /wiki/ArXiv_(identifier)
Doescher, C.; Keyl, M.; Fehr, Serge; Gelles, Ran; Goyal, Vipul; Ostrovsky, Rafail; Schaffner, Christian (2010). "Position-Based Quantum Cryptography: Impossibility and Constructions". SIAM Journal on Computing. 43: 150–178. arXiv:1009.2490. Bibcode:2010arXiv1009.2490B. doi:10.1137/130913687. S2CID 220613220. /wiki/ArXiv_(identifier)
Beigi, Salman; König, Robert (2011). "Simplified instantaneous non-local quantum computation with applications to position-based cryptography". New Journal of Physics. 13 (9): 093036. arXiv:1101.1065. Bibcode:2011NJPh...13i3036B. doi:10.1088/1367-2630/13/9/093036. S2CID 27648088. /wiki/ArXiv_(identifier)
Malaney, Robert (2016). "The Quantum Car". IEEE Wireless Communications Letters. 5 (6): 624–627. arXiv:1512.03521. doi:10.1109/LWC.2016.2607740. S2CID 2483729. /wiki/ArXiv_(identifier)
Radanliev, Petar (October 2023). "Red Teaming Generative AI/NLP, the BB84 quantum cryptography protocol and the NIST-approved Quantum-Resistant Cryptographic Algorithms". University of Oxford. arXiv:2310.04425. https://ora.ox.ac.uk/objects/uuid:45d125d9-2ae5-4dff-9806-6ea4c512c6b1/download_file?file_format=application%2Fpdf&safe_filename=Radanliev_et_al_2023_Red_Teaming_Generative.pdf&type_of_work=Internet+publication
Mayers, Dominic; Yao, Andrew C.-C. (1998). Quantum Cryptography with Imperfect Apparatus. IEEE Symposium on Foundations of Computer Science (FOCS). arXiv:quant-ph/9809039. Bibcode:1998quant.ph..9039M. /wiki/ArXiv_(identifier)
Colbeck, Roger (December 2006). "Chapter 5". Quantum And Relativistic Protocols For Secure Multi-Party Computation (Thesis). University of Cambridge. arXiv:0911.3814. /wiki/ArXiv_(identifier)
Vazirani, Umesh; Vidick, Thomas (2014). "Fully Device-Independent Quantum Key Distribution". Physical Review Letters. 113 (2): 140501. arXiv:1403.3830. Bibcode:2014PhRvL.113b0501A. doi:10.1103/PhysRevLett.113.020501. PMID 25062151. S2CID 23057977. /wiki/ArXiv_(identifier)
Miller, Carl; Shi, Yaoyun (2014). "Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices". Journal of the ACM. 63 (4): 33. arXiv:1402.0489. Bibcode:2014arXiv1402.0489M. /wiki/ArXiv_(identifier)
Miller, Carl; Shi, Yaoyun (2014). "Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices". Journal of the ACM. 63 (4): 33. arXiv:1402.0489. Bibcode:2014arXiv1402.0489M. /wiki/ArXiv_(identifier)
Miller, Carl; Shi, Yaoyun (2017). "Universal security for randomness expansion". SIAM Journal on Computing. 46 (4): 1304–1335. arXiv:1411.6608. doi:10.1137/15M1044333. S2CID 6792482. /wiki/ArXiv_(identifier)
Chung, Kai-Min; Shi, Yaoyun; Wu, Xiaodi (2014). "Physical Randomness Extractors: Generating Random Numbers with Minimal Assumptions". arXiv:1402.4797 [quant-ph]. /wiki/ArXiv_(identifier)
Arnon-Friedman, Rotem; Dupuis, Frédéric; Fawzi, Omar; Renner, Renato; Vidick, Thomas (31 January 2018). "Practical device-independent quantum cryptography via entropy accumulation". Nature Communications. 9 (1): 459. Bibcode:2018NatCo...9..459A. doi:10.1038/s41467-017-02307-4. ISSN 2041-1723. PMC 5792631. PMID 29386507. /wiki/Renato_Renner
Daniel J. Bernstein (2009). "Introduction to post-quantum cryptography" (PDF). Post-Quantum Cryptography. /wiki/Daniel_J._Bernstein
Daniel J. Bernstein (17 May 2009). Cost analysis of hash collisions: Will quantum computers make SHARCS obsolete? (PDF) (Report). Archived (PDF) from the original on 25 August 2017. /wiki/Daniel_J._Bernstein
"Post-quantum cryptography". Archived from the original on 17 July 2011. Retrieved 29 August 2010. http://pqcrypto.org/
Bernstein, Daniel J.; Buchmann, Johannes; Dahmen, Erik, eds. (2009). Post-quantum cryptography. Springer. ISBN 978-3-540-88701-0. 978-3-540-88701-0
Watrous, John (2009). "Zero-Knowledge against Quantum Attacks". SIAM Journal on Computing. 39 (1): 25–58. arXiv:quant-ph/0511020. CiteSeerX 10.1.1.190.2789. doi:10.1137/060670997. /wiki/ArXiv_(identifier)
"NSA Suite B Cryptography". Archived from the original on 1 January 2016. Retrieved 29 December 2015. https://web.archive.org/web/20160101091229/https://www.nsa.gov/ia/programs/suiteb_cryptography/
"Quantum Resistant Public Key Exchange: The Supersingular Isogenous Diffie-Hellman Protocol – CoinFabrik Blog". blog.coinfabrik.com. 13 October 2016. Archived from the original on 2 February 2017. Retrieved 24 January 2017. http://blog.coinfabrik.com/quantum-resistant-public-key-exchange-the-supersingular-isogenous-diffie-hellman-protocol/
Thapliyal, K.; Pathak, A. (2018). "Kak's three-stage protocol of secure quantum communication revisited". Quantum Information Processing. 17 (9): 229. arXiv:1803.02157. Bibcode:2018QuIP...17..229T. doi:10.1007/s11128-018-2001-z. S2CID 52009384. /wiki/ArXiv_(identifier)
Nikolopoulos, Georgios M.; Fischlin, Marc (2020). "Information-Theoretically Secure Data Origin Authentication with Quantum and Classical Resources". Cryptography. 4 (4): 31. arXiv:2011.06849. doi:10.3390/cryptography4040031. S2CID 226956062. https://doi.org/10.3390%2Fcryptography4040031
Doescher, C.; Keyl, M. (2001). "Quantum Digital Signatures". arXiv:quant-ph/0105032. /wiki/ArXiv_(identifier)
Collins, Robert J.; Donaldson, Ross J.; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J.; Andersson, Erika; Jeffers, John; Buller, Gerald S. (2014). "Realization of Quantum Digital Signatures without the Requirement of Quantum Memory". Physical Review Letters. 113 (4): 040502. arXiv:1311.5760. Bibcode:2014PhRvL.113d0502C. doi:10.1103/PhysRevLett.113.040502. PMID 25105603. S2CID 23925266. /wiki/ArXiv_(identifier)
Kawachi, Akinori; Koshiba, Takeshi; Nishimura, Harumichi; Yamakami, Tomoyuki (2011). "Computational Indistinguishability Between Quantum States and its Cryptographic Application". Journal of Cryptology. 25 (3): 528–555. arXiv:quant-ph/0403069. CiteSeerX 10.1.1.251.6055. doi:10.1007/s00145-011-9103-4. S2CID 6340239. /wiki/ArXiv_(identifier)
Kabashima, Yoshiyuki; Murayama, Tatsuto; Saad, David (2000). "Cryptographical Properties of Ising Spin Systems". Physical Review Letters. 84 (9): 2030–2033. arXiv:cond-mat/0002129. Bibcode:2000PhRvL..84.2030K. doi:10.1103/PhysRevLett.84.2030. PMID 11017688. S2CID 12883829. /wiki/ArXiv_(identifier)
Nikolopoulos, Georgios M. (2008). "Applications of single-qubit rotations in quantum public-key cryptography". Physical Review A. 77 (3): 032348. arXiv:0801.2840. Bibcode:2008PhRvA..77c2348N. doi:10.1103/PhysRevA.77.032348. S2CID 119097757. /wiki/ArXiv_(identifier)
Nikolopoulos, Georgios M.; Ioannou, Lawrence M. (2009). "Deterministic quantum-public-key encryption: Forward search attack and randomization". Physical Review A. 79 (4): 042327. arXiv:0903.4744. Bibcode:2009PhRvA..79d2327N. doi:10.1103/PhysRevA.79.042327. S2CID 118425296. /wiki/ArXiv_(identifier)
Seyfarth, U.; Nikolopoulos, G. M.; Alber, G. (2012). "Symmetries and security of a quantum-public-key encryption based on single-qubit rotations". Physical Review A. 85 (2): 022342. arXiv:1202.3921. Bibcode:2012PhRvA..85b2342S. doi:10.1103/PhysRevA.85.022342. S2CID 59467718. /wiki/ArXiv_(identifier)
Nikolopoulos, Georgios M.; Brougham, Thomas (11 July 2016). "Decision and function problems based on boson sampling". Physical Review A. 94 (1): 012315. arXiv:1607.02987. Bibcode:2016PhRvA..94a2315N. doi:10.1103/PhysRevA.94.012315. S2CID 5311008. https://link.aps.org/doi/10.1103/PhysRevA.94.012315
Nikolopoulos, Georgios M. (13 July 2019). "Cryptographic one-way function based on boson sampling". Quantum Information Processing. 18 (8): 259. arXiv:1907.01788. Bibcode:2019QuIP...18..259N. doi:10.1007/s11128-019-2372-9. ISSN 1573-1332. S2CID 195791867. https://doi.org/10.1007/s11128-019-2372-9
Nikolopoulos, Georgios M. (16 January 2025). "Quantum Diffie–Hellman key exchange". APL Quantum. 2 (1): 016107. arXiv:2501.09568. doi:10.1063/5.0242473. ISSN 2835-0103. https://pubs.aip.org/aip/apq/article/2/1/016107/3331640/Quantum-Diffie-Hellman-key-exchange
Buhrman, Harry; Cleve, Richard; Watrous, John; De Wolf, Ronald (2001). "Quantum Fingerprinting". Physical Review Letters. 87 (16): 167902. arXiv:quant-ph/0102001. Bibcode:2001PhRvL..87p7902B. doi:10.1103/PhysRevLett.87.167902. PMID 11690244. S2CID 1096490. /wiki/ArXiv_(identifier)
Nikolopoulos, Georgios M.; Diamanti, Eleni (10 April 2017). "Continuous-variable quantum authentication of physical unclonable keys". Scientific Reports. 7 (1): 46047. arXiv:1704.06146. Bibcode:2017NatSR...746047N. doi:10.1038/srep46047. ISSN 2045-2322. PMC 5385567. PMID 28393853. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385567
Nikolopoulos, Georgios M. (22 January 2018). "Continuous-variable quantum authentication of physical unclonable keys: Security against an emulation attack". Physical Review A. 97 (1): 012324. arXiv:1801.07434. Bibcode:2018PhRvA..97a2324N. doi:10.1103/PhysRevA.97.012324. S2CID 119486945. https://link.aps.org/doi/10.1103/PhysRevA.97.012324
Fladung, Lukas; Nikolopoulos, Georgios M.; Alber, Gernot; Fischlin, Marc (2019). "Intercept-Resend Emulation Attacks against a Continuous-Variable Quantum Authentication Protocol with Physical Unclonable Keys". Cryptography. 3 (4): 25. arXiv:1910.11579. doi:10.3390/cryptography3040025. S2CID 204901444. https://doi.org/10.3390%2Fcryptography3040025
Barbosa, Geraldo A.; Corndorf, Eric; Kumar, Prem; Yuen, Horace P. (2 June 2003). "Secure Communication Using Mesoscopic Coherent States". Physical Review Letters. 90 (22): 227901. arXiv:quant-ph/0212018. Bibcode:2003PhRvL..90v7901B. doi:10.1103/PhysRevLett.90.227901. PMID 12857341. S2CID 12720233. https://doi.org/10.1103/PhysRevLett.90.227901
Yuen, H. P. (31 July 2009). Physical Cryptography: A New Approach to Key Generation and Direct Encryption (PDF) (PhD thesis). https://apps.dtic.mil/sti/pdfs/ADA512847.pdf
Verma, Pramode K.; El Rifai, Mayssaa; Chan, K. W. Clifford (19 August 2018). "Secure Communication Based on Quantum Noise". Multi-photon Quantum Secure Communication. Signals and Communication Technology. pp. 85–95. doi:10.1007/978-981-10-8618-2_4. ISBN 978-981-10-8617-5. S2CID 56788374. 978-981-10-8617-5
Takehisa, Iwakoshi (27 January 2020). "Analysis of Y00 Protocol Under Quantum Generalization of a Fast Correlation Attack: Toward Information-Theoretic Security". IEEE Access. 8: 23417–23426. arXiv:2001.11150. Bibcode:2020IEEEA...823417I. doi:10.1109/ACCESS.2020.2969455. S2CID 210966407. https://doi.org/10.1109/ACCESS.2020.2969455
Hirota, Osamu; et al. (1 September 2010). "Getting around the Shannon limit of cryptography". SPIE Newsroom. doi:10.1117/2.1201008.003069. https://doi.org/10.1117/2.1201008.003069
Quan, Yu; et al. (30 March 2020). "Secure 100Gb/s IMDD transmission over 100 km SSMF enabled by quantum noise stream cipher and sparse RLS-Volterra equalizer". IEEE Access. 8: 63585–63594. Bibcode:2020IEEEA...863585Y. doi:10.1109/ACCESS.2020.2984330. S2CID 215816092. https://doi.org/10.1109%2FACCESS.2020.2984330
Wyner, A. D. (October 1975). "The Wire-Tap Channel". Bell System Technical Journal. 54 (8): 1355–1387. doi:10.1002/j.1538-7305.1975.tb02040.x. S2CID 21512925. https://doi.org/10.1002/j.1538-7305.1975.tb02040.x
Roy J., Glauber (15 June 1963). "The Quantum Theory of Optical Coherence". Physical Review. 130 (6): 2529–2539. Bibcode:1963PhRv..130.2529G. doi:10.1103/PhysRev.130.2529. https://doi.org/10.1103%2FPhysRev.130.2529
E. C. G., Sudarshan (1 April 1963). "Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams". Physical Review Letters. 10 (7): 277–279. Bibcode:1963PhRvL..10..277S. doi:10.1103/PhysRevLett.10.277. https://doi.org/10.1103/PhysRevLett.10.277
Walls, D. F.; Milburn, G. J. (January 2008). Quantum optics. Springer. ISBN 9783540285731. 9783540285731
Verma, Pramode K.; El Rifai, Mayssaa; Chan, K. W. Clifford (19 August 2018). "Secure Communication Based on Quantum Noise". Multi-photon Quantum Secure Communication. Signals and Communication Technology. pp. 85–95. doi:10.1007/978-981-10-8618-2_4. ISBN 978-981-10-8617-5. S2CID 56788374. 978-981-10-8617-5
Hirota, Osamu; et al. (26 August 2005). "Quantum stream cipher by the Yuen 2000 protocol: Design and experiment by an intensity-modulation scheme". Physical Review A. 72 (2): 022335. arXiv:quant-ph/0507043. Bibcode:2005PhRvA..72b2335H. doi:10.1103/PhysRevA.72.022335. S2CID 118937168. https://doi.org/10.1103/PhysRevA.72.022335
Yoshida, Masato; et al. (15 February 2021). "10 Tbit/s QAM Quantum Noise Stream Cipher Coherent Transmission Over 160 Km". Journal of Lightwave Technology. 39 (4): 1056–1063. Bibcode:2021JLwT...39.1056Y. doi:10.1109/JLT.2020.3016693. S2CID 225383926. https://doi.org/10.1109/JLT.2020.3016693
Futami, Fumio; et al. (March 2018). "Dynamic Routing of Y-00 Quantum Stream Cipher in Field-Deployed Dynamic Optical Path Network". Optical Fiber Communication Conference. pp. Tu2G.5. doi:10.1364/OFC.2018.Tu2G.5. ISBN 978-1-943580-38-5. S2CID 49185664. 978-1-943580-38-5
Tanizawa, Ken; Futami, Fumio (2020). Security-Enhanced 10,118-km Single-Channel 40-Gbit/s Transmission Using PSK Y-00 Quantum Stream Cipher. pp. 1–4. doi:10.1109/ECOC48923.2020.9333304. ISBN 978-1-7281-7361-0. S2CID 231852229. 978-1-7281-7361-0
Tanizawa, Ken; Futami, Fumio (April 2020). "Quantum Noise-Assisted Coherent Radio-over-Fiber Cipher System for Secure Optical Fronthaul and Microwave Wireless Links". Journal of Lightwave Technology. 38 (16): 4244–4249. Bibcode:2020JLwT...38.4244T. doi:10.1109/JLT.2020.2987213. S2CID 219095947. https://doi.org/10.1109%2FJLT.2020.2987213
Yuen, Horace P. (November 2009). "Key Generation: Foundations and a New Quantum Approach". IEEE Journal of Selected Topics in Quantum Electronics. 15 (6): 1630–1645. arXiv:0906.5241. Bibcode:2009IJSTQ..15.1630Y. doi:10.1109/JSTQE.2009.2025698. S2CID 867791. https://doi.org/10.1109/JSTQE.2009.2025698
Takehisa, Iwakoshi (27 January 2020). "Analysis of Y00 Protocol Under Quantum Generalization of a Fast Correlation Attack: Toward Information-Theoretic Security". IEEE Access. 8: 23417–23426. arXiv:2001.11150. Bibcode:2020IEEEA...823417I. doi:10.1109/ACCESS.2020.2969455. S2CID 210966407. https://doi.org/10.1109/ACCESS.2020.2969455
Iwakoshi, Takehisa (5 June 2019). "Message-Falsification Prevention With Small Quantum Mask in Quaternary Y00 Protocol". IEEE Access. 7: 74482–74489. Bibcode:2019IEEEA...774482I. doi:10.1109/ACCESS.2019.2921023. S2CID 195225370. https://doi.org/10.1109%2FACCESS.2019.2921023
Nishioka, Tsuyoshi; et al. (21 June 2004). "How much security does Y-00 protocol provide us?". Physics Letters A. 327 (1): 28–32. arXiv:quant-ph/0310168. Bibcode:2004PhLA..327...28N. doi:10.1016/j.physleta.2004.04.083. S2CID 119069709. https://doi.org/10.1016/j.physleta.2004.04.083
Yuen, Horace P.; et al. (10 October 2005). "Comment on:'How much security does Y-00 protocol provide us?'[Phys. Lett. A 327 (2004) 28]". Physics Letters A. 346 (1–3): 1–6. Bibcode:2005PhLA..346....1Y. doi:10.1016/j.physleta.2005.08.022. https://doi.org/10.1016/j.physleta.2005.08.022
Nishioka, Tsuyoshi; et al. (10 October 2005). "Reply to:"Comment on:'How much security does Y-00 protocol provide us?'" [Phys. Lett. A 346 (2005) 1]". Physics Letters A. 346 (1–3). Bibcode:2005PhLA..346....1Y. doi:10.1016/j.physleta.2005.08.022. https://doi.org/10.1016/j.physleta.2005.08.022
Nair, Ranjith; et al. (13 September 2005). "Reply to:'Reply to:"Comment on:'How much security does Y-00 protocol provide us?'"'". arXiv:quant-ph/0509092. /wiki/ArXiv_(identifier)
Donnet, Stéphane; et al. (21 August 2006). "Security of Y-00 under heterodyne measurement and fast correlation attack". Physics Letters A. 356 (6): 406–410. Bibcode:2006PhLA..356..406D. doi:10.1016/j.physleta.2006.04.002. https://doi.org/10.1016/j.physleta.2006.04.002
Yuen, Horace P.; et al. (23 April 2007). "On the security of Y-00 under fast correlation and other attacks on the key". Physics Letters A. 364 (2): 112–116. arXiv:quant-ph/0608028. Bibcode:2007PhLA..364..112Y. doi:10.1016/j.physleta.2006.12.033. S2CID 7824483. https://doi.org/10.1016/j.physleta.2006.12.033
Mihaljević, Miodrag J. (24 May 2007). "Generic framework for the secure Yuen 2000 quantum-encryption protocol employing the wire-tap channel approach". Physical Review A. 75 (5): 052334. Bibcode:2007PhRvA..75e2334M. doi:10.1103/PhysRevA.75.052334. https://doi.org/10.1103/PhysRevA.75.052334
Shimizu, Tetsuya; et al. (27 March 2008). "Running key mapping in a quantum stream cipher by the Yuen 2000 protocol". Physical Review A. 77 (3): 034305. Bibcode:2008PhRvA..77c4305S. doi:10.1103/PhysRevA.77.034305. https://doi.org/10.1103/PhysRevA.77.034305
Tregubov, P. A.; Trushechkin, A. S. (21 November 2020). "Quantum Stream Ciphers: Impossibility of Unconditionally Strong Algorithms". Journal of Mathematical Sciences. 252: 90–103. doi:10.1007/s10958-020-05144-x. S2CID 254745640. /wiki/Doi_(identifier)
Iwakoshi, Takehisa (February 2021). "Security Evaluation of Y00 Protocol Based on Time-Translational Symmetry Under Quantum Collective Known-Plaintext Attacks". IEEE Access. 9: 31608–31617. Bibcode:2021IEEEA...931608I. doi:10.1109/ACCESS.2021.3056494. S2CID 232072394. https://doi.org/10.1109%2FACCESS.2021.3056494
Scarani, Valerio; Bechmann-Pasquinucci, Helle; Cerf, Nicolas J.; Dušek, Miloslav; Lütkenhaus, Norbert; Peev, Momtchil (29 September 2009). "The security of practical quantum key distribution". Reviews of Modern Physics. 81 (3): 1301–1350. arXiv:0802.4155. Bibcode:2009RvMP...81.1301S. doi:10.1103/revmodphys.81.1301. ISSN 0034-6861. S2CID 15873250. https://dx.doi.org/10.1103/revmodphys.81.1301
Zhao, Yi (2009). Quantum cryptography in real-life applications: assumptions and security (PDF) (Thesis). Bibcode:2009PhDT........94Z. S2CID 118227839. Archived from the original (PDF) on 28 February 2020. https://web.archive.org/web/20200228224625/https://pdfs.semanticscholar.org/ccc3/cb3422d8b2b02f66515d45710a09df8c56d0.pdf
Zhao, Yi (2009). Quantum cryptography in real-life applications: assumptions and security (PDF) (Thesis). Bibcode:2009PhDT........94Z. S2CID 118227839. Archived from the original (PDF) on 28 February 2020. https://web.archive.org/web/20200228224625/https://pdfs.semanticscholar.org/ccc3/cb3422d8b2b02f66515d45710a09df8c56d0.pdf
Lo, Hoi-Kwong (22 October 2005). "Decoy State Quantum Key Distribution". Quantum Information Science. 94 (23). WORLD SCIENTIFIC: 143. arXiv:quant-ph/0411004. Bibcode:2005qis..conf..143L. doi:10.1142/9789812701633_0013. ISBN 978-981-256-460-3. PMID 16090452. 978-981-256-460-3
Lo, Hoi-Kwong (22 October 2005). "Decoy State Quantum Key Distribution". Quantum Information Science. 94 (23). WORLD SCIENTIFIC: 143. arXiv:quant-ph/0411004. Bibcode:2005qis..conf..143L. doi:10.1142/9789812701633_0013. ISBN 978-981-256-460-3. PMID 16090452. 978-981-256-460-3
Lo, Hoi-Kwong (22 October 2005). "Decoy State Quantum Key Distribution". Quantum Information Science. 94 (23). WORLD SCIENTIFIC: 143. arXiv:quant-ph/0411004. Bibcode:2005qis..conf..143L. doi:10.1142/9789812701633_0013. ISBN 978-981-256-460-3. PMID 16090452. 978-981-256-460-3
Lo, Hoi-Kwong (22 October 2005). "Decoy State Quantum Key Distribution". Quantum Information Science. 94 (23). WORLD SCIENTIFIC: 143. arXiv:quant-ph/0411004. Bibcode:2005qis..conf..143L. doi:10.1142/9789812701633_0013. ISBN 978-981-256-460-3. PMID 16090452. 978-981-256-460-3
Reimer, Michael E.; Cher, Catherine (November 2019). "The quest for a perfect single-photon source". Nature Photonics. 13 (11): 734–736. Bibcode:2019NaPho..13..734R. doi:10.1038/s41566-019-0544-x. ISSN 1749-4893. S2CID 209939102. https://www.nature.com/articles/s41566-019-0544-x
Zhao, Yi (2009). Quantum cryptography in real-life applications: assumptions and security (PDF) (Thesis). Bibcode:2009PhDT........94Z. S2CID 118227839. Archived from the original (PDF) on 28 February 2020. https://web.archive.org/web/20200228224625/https://pdfs.semanticscholar.org/ccc3/cb3422d8b2b02f66515d45710a09df8c56d0.pdf
Makarov, Vadim; Anisimov, Andrey; Skaar, Johannes (31 July 2008). "Erratum: Effects of detector efficiency mismatch on security of quantum cryptosystems [Phys. Rev. A74, 022313 (2006)]". Physical Review A. 78 (1): 019905. Bibcode:2008PhRvA..78a9905M. doi:10.1103/physreva.78.019905. ISSN 1050-2947. https://doi.org/10.1103%2Fphysreva.78.019905
Makarov, Vadim; Anisimov, Andrey; Skaar, Johannes (31 July 2008). "Erratum: Effects of detector efficiency mismatch on security of quantum cryptosystems [Phys. Rev. A74, 022313 (2006)]". Physical Review A. 78 (1): 019905. Bibcode:2008PhRvA..78a9905M. doi:10.1103/physreva.78.019905. ISSN 1050-2947. https://doi.org/10.1103%2Fphysreva.78.019905
Makarov, Vadim; Anisimov, Andrey; Skaar, Johannes (31 July 2008). "Erratum: Effects of detector efficiency mismatch on security of quantum cryptosystems [Phys. Rev. A74, 022313 (2006)]". Physical Review A. 78 (1): 019905. Bibcode:2008PhRvA..78a9905M. doi:10.1103/physreva.78.019905. ISSN 1050-2947. https://doi.org/10.1103%2Fphysreva.78.019905
Makarov, Vadim; Anisimov, Andrey; Skaar, Johannes (31 July 2008). "Erratum: Effects of detector efficiency mismatch on security of quantum cryptosystems [Phys. Rev. A74, 022313 (2006)]". Physical Review A. 78 (1): 019905. Bibcode:2008PhRvA..78a9905M. doi:10.1103/physreva.78.019905. ISSN 1050-2947. https://doi.org/10.1103%2Fphysreva.78.019905
Makarov, Vadim; Anisimov, Andrey; Skaar, Johannes (31 July 2008). "Erratum: Effects of detector efficiency mismatch on security of quantum cryptosystems [Phys. Rev. A74, 022313 (2006)]". Physical Review A. 78 (1): 019905. Bibcode:2008PhRvA..78a9905M. doi:10.1103/physreva.78.019905. ISSN 1050-2947. https://doi.org/10.1103%2Fphysreva.78.019905
Makarov, Vadim; Anisimov, Andrey; Skaar, Johannes (31 July 2008). "Erratum: Effects of detector efficiency mismatch on security of quantum cryptosystems [Phys. Rev. A74, 022313 (2006)]". Physical Review A. 78 (1): 019905. Bibcode:2008PhRvA..78a9905M. doi:10.1103/physreva.78.019905. ISSN 1050-2947. https://doi.org/10.1103%2Fphysreva.78.019905
"Quantum Key Distribution (QKD) and Quantum Cryptography (QC)". National Security Agency. Retrieved 16 July 2022. This article incorporates text from this source, which is in the public domain. https://www.nsa.gov/Cybersecurity/Quantum-Key-Distribution-QKD-and-Quantum-Cryptography-QC/
Post-Quantum Cryptography: Current state and quantum mitigation, Section 6 "Conclusion" [1] https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
Quantum security technologies https://www.ncsc.gov.uk/whitepaper/quantum-security-technologies
Should Quantum Key Distribution be Used for Secure Communications? [2] https://cyber.gouv.fr/en/publications/should-quantum-key-distribution-be-used-secure-communications
"Quantum Cryptography". https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und-Post-Quanten-Kryptografie/Quantenkryptografie/quantenkryptografie.html
"Quantum Key Distribution (QKD) and Quantum Cryptography (QC)". National Security Agency. Retrieved 16 July 2022. This article incorporates text from this source, which is in the public domain. https://www.nsa.gov/Cybersecurity/Quantum-Key-Distribution-QKD-and-Quantum-Cryptography-QC/
Scarani, Valerio; Kurtsiefer, Christian (4 December 2014). "The black paper of quantum cryptography: Real implementation problems". Theoretical Computer Science. 560: 27–32. arXiv:0906.4547. doi:10.1016/j.tcs.2014.09.015. S2CID 44504715. https://doi.org/10.1016/j.tcs.2014.09.015
Pacher, Christoph; et, al. (January 2016). "Attacks on quantum key distribution protocols that employ non-ITS authentication". Quantum Information Processing. 15 (1): 327–362. arXiv:1209.0365. Bibcode:2016QuIP...15..327P. doi:10.1007/s11128-015-1160-4. S2CID 254986932. https://doi.org/10.1007/s11128-015-1160-4
Mattsson, J. P.; et al. (December 2021). "Quantum-Resistant Cryptography". arXiv:2112.00399 [cs.CR]. /wiki/ArXiv_(identifier)
Bloom, Yuval; Fields, Ilai; Maslennikov, Alona; Rozenman, Georgi Gary (2022). "Quantum Cryptography—A Simplified Undergraduate Experiment and Simulation". Physics. 4 (1): 104–123. Bibcode:2022Physi...4..104B. doi:10.3390/physics4010009. https://doi.org/10.3390%2Fphysics4010009