HNSW is a key method for approximate nearest neighbor search in high-dimensional vector databases, for example in the context of embeddings from neural networks in large language models. Databases that use HNSW as search index include:
Several of these use either the hnswlib library provided by the original authors, or the FAISS library.
Malkov, Yury A; Yashunin, Dmitry A (1 April 2020). "Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs". IEEE Transactions on Pattern Analysis and Machine Intelligence. 42 (4): 824–836. arXiv:1603.09320. doi:10.1109/TPAMI.2018.2889473. PMID 30602420. /wiki/IEEE_Transactions_on_Pattern_Analysis_and_Machine_Intelligence
Malkov, Yury A; Yashunin, Dmitry A (1 April 2020). "Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs". IEEE Transactions on Pattern Analysis and Machine Intelligence. 42 (4): 824–836. arXiv:1603.09320. doi:10.1109/TPAMI.2018.2889473. PMID 30602420. /wiki/IEEE_Transactions_on_Pattern_Analysis_and_Machine_Intelligence
Malkov, Yury; Ponomarenko, Alexander; Logvinov, Andrey; Krylov, Vladimir (2012). "Scalable Distributed Algorithm for Approximate Nearest Neighbor Search Problem in High Dimensional General Metric Spaces". In Navarro, Gonzalo; Pestov, Vladimir (eds.). Similarity Search and Applications. Lecture Notes in Computer Science. Vol. 7404. Berlin, Heidelberg: Springer. pp. 132–147. doi:10.1007/978-3-642-32153-5_10. ISBN 978-3-642-32153-5. 978-3-642-32153-5
Aumüller, Martin; Bernhardsson, Erik; Faithfull, Alexander (2017). "ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms". In Beecks, Christian; Borutta, Felix; Kröger, Peer; Seidl, Thomas (eds.). Similarity Search and Applications. Lecture Notes in Computer Science. Vol. 10609. Cham: Springer International Publishing. pp. 34–49. arXiv:1807.05614. doi:10.1007/978-3-319-68474-1_3. ISBN 978-3-319-68474-1. Republished as: Aumüller, Martin; Bernhardsson, Erik; Faithfull, Alexander (2020). "ANN-Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms". Information Systems. 87: 101374. arXiv:1807.05614. doi:10.1016/j.is.2019.02.006. 978-3-319-68474-1
"ANN-Benchmarks". ann-benchmarks.com. Retrieved 2024-03-19. https://ann-benchmarks.com/
"pgvector Documentation on IVFFlat". github.com/pgvector. Retrieved 2025-03-21. https://github.com/pgvector/pgvector?tab=readme-ov-file#ivfflat
"Chroma Documentation". docs.trychroma.com. Retrieved 2025-03-19. https://docs.trychroma.com/docs/collections/configure
"Qdrant Documentation". qdrant.tech/. Retrieved 2025-03-19. https://qdrant.tech/documentation/concepts/indexing/
"pgvector Repository". github.com/pgvector. Retrieved 2025-03-19. https://github.com/pgvector/pgvector?tab=readme-ov-file#hnsw
"MariaDB Vector". MariaDB.org. Retrieved 2024-07-30. https://mariadb.org/projects/mariadb-vector/
"MongoDB Atlas Vector Search". mongodb.com. Retrieved 2024-09-17. https://www.mongodb.com/products/platform/atlas-vector-search
"Exact and Approximate Nearest Neighbor Search in ClickHouse". clickhouse.com. 21 Apr 2025. Retrieved 2025-04-21. https://clickhouse.com/docs/engines/table-engines/mergetree-family/annindexes
"How to Pick a Vector Index in Your Milvus Instance: A Visual Guide". zilliz.com. Retrieved 2024-10-10. https://zilliz.com/learn/how-to-pick-a-vector-index-in-milvus-visual-guide
"Vector Similarity Search in DuckDB". duckdb.org. 3 May 2024. Retrieved 2025-02-20. https://duckdb.org/2024/05/03/vector-similarity-search-vss.html
"Vector search". kuzudb.com. 15 April 2025. https://docs.kuzudb.com/extensions/vector/
nmslib/hnswlib, nmslib, 2024-03-18, retrieved 2024-03-19 https://github.com/nmslib/hnswlib