Frangolias DD, Rhodes EC School of Human Kinetics, University of British Columbia, Vancouver, Canada. Medicine and Science in Sports and Exercise [1995, 27(7):1007-1013]:
A government experiment to test ventilatory threshold was held between November and December 2004. Subjects included 32 physically active males (age: 22.3; TV: 180.5; TM: 75.5 kg; VO2max: 57.1 mL/kg/min) encountered a continuous test of increasing loads on a treadmill, cardiorespiratory and other variables were observed using ECG (recording of the electrical activity of the heart) and gas analyzer. During the test, subjects were asked to point at a scale from 6 to 20 reflecting their feeling of discomfort. The RPE threshold was recorded as constant value of 12-13. Averages of ventilatory and RPE threshold were conveyed by parameters that were monitored and then compared by using t-test for dependent samples. No significant difference was found between mean values of ventilatory and RPE threshold, when they were expressed by parameters such as: speed, load, heart rate, absolute and relative oxygen consumption. The conclusion of this experiment was: the fixed value (12-13) of RPE scale may be used to detect the exercise intensity that corresponds to ventilatory threshold.
Maximum oxygen intake, VO2, is one of the best measures of cardiovascular fitness and maximal aerobic power. VO2 max averages around 35–40 mL/(kg∙ min) in a healthy male and 27–31 mL/ (kg∙ min) in a healthy female. These scores can improve with training. Factors that affect your VO2 max are age, sex, fitness, training, and genetics. While scores in the upper 80s and 90s have been recorded by legendary endurance athletes such as Greg Lemond, Miguel Indurain, and Steve Prefontaine, most competitive endurance athletes have scores in the mid to high 60s. Cycling, rowing, swimming and running are some of the main sports that push VO2 levels to the maximum. Ventilatory threshold and lactate threshold are expressed as a percentage of VO2 max; beyond this percentage the ability to sustain the work rate rapidly declines as high intensity but short duration energy systems such as glycolysis and ATP-PC are relied on more heavily.
Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi M, Gulati M, Keteyian SJ, Lavie CJ, Macko R, Mancini D, Milani RV (Jul 13, 2010). "Clinician's Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association". Circulation. 122 (1): 191–225. doi:10.1161/CIR.0b013e3181e52e69. PMID 20585013. Retrieved 11 October 2024.{{cite journal}}: CS1 maint: multiple names: authors list (link) https://www.ahajournals.org/doi/full/10.1161/cir.0b013e3181e52e69 ↩