As the name implies, a ggNMOS device consists of a relatively wide NMOS device in which the gate, source, and body are tied together to ground. The drain of the ggNMOS is connected to the I/O pad under protection. A parasitic NPN bipolar junction transistor (BJT) is thus formed with the drain (n-type) acting as the collector, the base/source combination (n-type) as the emitter, and the substrate (p-type) as the base. As is explained below, a key element to the operation of the ggNMOS is the parasitic resistance present between the emitter and base terminals of the parasitic npn BJT. This resistance is a result of the finite conductivity of the p-type doped substrate.
When a positive ESD event appears upon the I/O pad (drain), the collector-base junction of the parasitic NPN BJT becomes reverse biased to the point of avalanche breakdown. At this point, the positive current flowing from the base to ground induces a voltage potential across the parasitic resistor, causing a positive voltage to appear across the base-emitter junction. The positive VBE forward biases this junction, triggering the parasitic NPN BJT.3
https://www.researchgate.net/publication/4133911_Modeling_MOS_snapback_for_circuit-level_ESD_simulation_using_BSIM3_and_VBIC_models
Issaq, E.; Merri, R. (1993). ESD design methodology. Electrical Overstress/Electrostatic Discharge Symposium. Lake Buena Vista, Florida. pp. 223–237. ↩
Green, T. (1988). A review of EOS/ESD field failures in military equipment. Electrical Overstress/Electrostatic Discharge Symposium. Anaheim, California. pp. 7–14. ↩
Wang, Albert (2002). On-Chip ESD Protection for Integrated Circuits: An IC Design Perspective. Norwell, MA, USA: Kluwer Academic Publishing. ISBN 0792376471. 0792376471 ↩