Insecticides are widely used across the world to increase agricultural productivity and quality in vegetables and grains (and to a lesser degree the use for vector control for livestock). The resulting resistance has reduced function for those very purposes, and in vector control for humans.
Pests becomes resistant by evolving physiological changes that protect them from the chemical.
Resistance may involve rapid excretion of toxins, secretion of them within the body away from vulnerable tissues and decreased penetration through the body wall.
Mutation in only a single gene can lead to the evolution of a resistant organism. In other cases, multiple genes are involved. Resistant genes are usually autosomal. This means that they are located on autosomes (as opposed to allosomes, also known as sex chromosomes). As a result, resistance is inherited similarly in males and females. Also, resistance is usually inherited as an incompletely dominant trait. When a resistant individual mates with a susceptible individual, their progeny generally has a level of resistance intermediate between the parents.
Adaptation to pesticides comes with an evolutionary cost, usually decreasing relative fitness of organisms in the absence of pesticides. Resistant individuals often have reduced reproductive output, life expectancy, mobility, etc. Non-resistant individuals sometimes grow in frequency in the absence of pesticides - but not always - so this is one way that is being tried to combat resistance.
The molecular mechanisms of insecticide resistance only became comprehensible in 1997. Guerrero et al. 1997 used the newest methods of the time to find mutations producing pyrethroid resistance in dipterans. Even so, these adaptations to pesticides were unusually rapid and may not necessarily represent the norm in wild populations, under wild conditions. Natural adaptation processes take much longer and almost always happen in response to gentler pressures.
In order to remediate the problem it first must be ascertained what is really wrong. Assaying of suspected pesticide resistance - and not merely field observation and experience - is necessary because it may be mistaken for failure to apply the pesticide as directed, or microbial degradation of the pesticide.
Resistance can be managed by reducing use of a pesticide: which may also be beneficial for mitigating pest resurgence. This allows non-resistant organisms to out-compete resistant strains. They can later be killed by returning to use of the pesticide.
A complementary approach is to site untreated refuges near treated croplands where susceptible pests can survive.
When pesticides are the sole or predominant method of pest control, resistance is commonly managed through pesticide rotation. This involves switching among pesticide classes with different modes of action to delay or mitigate pest resistance. The Resistance Action Committees monitor resistance across the world, and in order to do that, each maintains a list of modes of action and pesticides that fall into those categories: the Fungicide Resistance Action Committee, the Weed Science Society of America (the Herbicide Resistance Action Committee no longer has its own scheme, and is contributing to WSSA's from now on), and the Insecticide Resistance Action Committee. The U.S. Environmental Protection Agency (EPA) also uses those classification schemes.
Manufacturers may recommend no more than a specified number of consecutive applications of a pesticide class be made before moving to a different pesticide class.
Two or more pesticides with different modes of action can be tankmixed on the farm to improve results and delay or mitigate existing pest resistance.
Before glyphosate, most herbicides would kill a limited number of weed species, forcing farmers to continually rotate their crops and herbicides to prevent resistance. Glyphosate disrupts the ability of most plants to construct new proteins. Glyphosate-tolerant transgenic crops are not affected.
In response to the rise in glyphosate resistance, farmers turned to other herbicides—applying several in a single season. In the United States, most midwestern and southern farmers continue to use glyphosate because it still controls most weed species, applying other herbicides, known as residuals, to deal with resistance.
The use of multiple herbicides appears to have slowed the spread of glyphosate resistance. From 2005 through 2010 researchers discovered 13 different weed species that had developed resistance to glyphosate. From 2010 to 2014 only two more were discovered.
A 2013 Missouri survey showed that multiply-resistant weeds had spread. 43% of the sampled weed populations were resistant to two different herbicides, 6% to three and 0.5% to four. In Iowa a survey revealed dual resistance in 89% of waterhemp populations, 25% resistant to three and 10% resistant to five.
Resistance increases pesticide costs. For southern cotton, herbicide costs climbed from between $50–$75 per hectare ($20–$30/acre) a few years ago to about $370 per hectare ($150/acre) in 2014. In the South, resistance contributed to the shift that reduced cotton planting by 70% in Arkansas and 60% in Tennessee. For soybeans in Illinois, costs rose from about $25–$160 per hectare ($10–$65/acre).
PBS (2001), Pesticide resistance. Retrieved on September 15, 2007. https://www.pbs.org/wgbh/evolution/library/10/1/l_101_02.html
Guedes, R.N.C.; Smagghe, G.; Stark, J.D.; Desneux, N. (2016-03-11). "Pesticide-Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs". Annual Review of Entomology. 61 (1). Annual Reviews: 43–62. doi:10.1146/annurev-ento-010715-023646. ISSN 0066-4170. PMID 26473315. S2CID 207747295. http://www.locus.ufv.br/handle/123456789/19754
"Resistance Definition". Insecticide Resistance Action Committee. 2007. http://www.irac-online.org/documents/irac-croplife-irm-booklet/?ext=pdf
PBS (2001), Pesticide resistance. Retrieved on September 15, 2007. https://www.pbs.org/wgbh/evolution/library/10/1/l_101_02.html
Grapes at Missouri State University (MSU) How pesticide resistance develops Archived 2007-08-17 at the Wayback Machine. Excerpt from: Larry Gut, Annemiek Schilder, Rufus Isaacs and Patricia McManus. Fruit Crop Ecology and Management, Chapter 2: "Managing the Community of Pests and Beneficials." Retrieved on September 15, 2007. /wiki/Missouri_State_University
Miller GT (2004), Sustaining the Earth, 6th edition. Thompson Learning, Inc. Pacific Grove, California. Chapter 9, Pages 211-216.
Levine, E; Oloumi-Sadeghi, H; Fisher, JR (1992). "Discovery of multiyear diapause in Illinois and South Dakota Northern corn rootworm (Coleoptera: Cerambycidae) eggs and incidence of the prolonged diapause trait in Illinois". Journal of Economic Entomology. 85: 262–267. doi:10.1093/jee/85.1.262. /wiki/Doi_(identifier)
Service, Robert F. (20 September 2013). "What Happens When Weed Killers Stop Killing?". Science. 341 (6152): 1329. doi:10.1126/science.341.6152.1329. PMID 24052282. https://www.science.org/doi/full/10.1126/science.341.6152.1329
Guedes, R. N. C.; Roditakis, E.; Campos, M. R.; Haddi, K.; Bielza, P.; Siqueira, H. A. A.; Tsagkarakou, A.; Vontas, J.; Nauen, R. (2019-01-31). "Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook". Journal of Pest Science. 92 (4). Springer: 1329–1342. doi:10.1007/s10340-019-01086-9. ISSN 1612-4758. S2CID 59524736. https://doi.org/10.1007%2Fs10340-019-01086-9
Ferro, DN (1993). "Potential for resistance to Bacillus thuringiensis: Colorado potato beetle (Coleoptera: Chrysomelidae) – a model system". American Entomologist. 39: 38–44. doi:10.1093/ae/39.1.38. /wiki/Doi_(identifier)
Bishop, B. A.; Grafius, E. J. (1996). "Insecticide resistance in the Colorado potato beetle". In Jolivet, Pierre H. A.; Cox, M. L. (eds.). Chrysomelidae biology. Vol. 1. New York, N.Y: SPB Academic Publishing. ISBN 978-9051031232. OCLC 36335993. ISBN 90-5103-123-8. AGRIS id US201300312340. 978-9051031232
Cloyd, Raymound A (January 2024). "Can Plants Influence Susceptibilty to Insectsicides?". GPN, Greenhouse Prduct News. 34 (1): 12.
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
Enserink, Martin; Hines, Pamela J.; Vignieri, Sacha N.; Wigginton, Nicholas S.; Yeston, Jake S. (2013-08-16). "The Pesticide Paradox". Science. 341 (6147): 728–729. doi:10.1126/science.341.6147.728. ISSN 0036-8075. PMID 23950523. https://www.science.org/doi/10.1126/science.341.6147.728
Hedlund, John; Longo, Stefano B.; York, Richard (2019-09-08). "Agriculture, Pesticide Use, and Economic Development: A Global Examination (1990–2014)". Rural Sociology. 85 (2): 519–544. doi:10.1111/ruso.12303. ISSN 0036-0112. S2CID 134734306. https://onlinelibrary.wiley.com/doi/10.1111/ruso.12303
Miller GT (2004), Sustaining the Earth, 6th edition. Thompson Learning, Inc. Pacific Grove, California. Chapter 9, Pages 211-216.
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
Jørgensen, Peter Søgaard; Folke, Carl; Carroll, Scott P. (2019-11-02). "Evolution in the Anthropocene: Informing Governance and Policy". Annual Review of Ecology, Evolution, and Systematics. 50 (1). Annual Reviews: 527–546. doi:10.1146/annurev-ecolsys-110218-024621. ISSN 1543-592X. S2CID 202846760. https://doi.org/10.1146%2Fannurev-ecolsys-110218-024621
Jørgensen, Peter Søgaard; Folke, Carl; Carroll, Scott P. (2019-11-02). "Evolution in the Anthropocene: Informing Governance and Policy". Annual Review of Ecology, Evolution, and Systematics. 50 (1). Annual Reviews: 527–546. doi:10.1146/annurev-ecolsys-110218-024621. ISSN 1543-592X. S2CID 202846760. https://doi.org/10.1146%2Fannurev-ecolsys-110218-024621
Doris Stanley (January 1996), Natural product outdoes malathion - alternative pest control strategy. Retrieved on September 15, 2007. http://findarticles.com/p/articles/mi_m3741/is_n1_v44/ai_18019289
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
PBS (2001), Pesticide resistance. Retrieved on September 15, 2007. https://www.pbs.org/wgbh/evolution/library/10/1/l_101_02.html
Miller GT (2004), Sustaining the Earth, 6th edition. Thompson Learning, Inc. Pacific Grove, California. Chapter 9, Pages 211-216.
Mouchet, Jean (1988). "Agriculture and Vector Resistance". International Journal of Tropical Insect Science. 9 (3). Cambridge University Press (CUP): 297–302. doi:10.1017/s1742758400006238. ISSN 1742-7584. S2CID 85650599. /w/index.php?title=International_Journal_of_Tropical_Insect_Science&action=edit&redlink=1
Roberts, Donald R.; Manguin, S; Mouchet, J (2000). "DDT house spraying and re-emerging malaria". The Lancet. 356 (9226). Elsevier: 330–332. doi:10.1016/s0140-6736(00)02516-2. ISSN 0140-6736. PMID 11071203. S2CID 19359748. /wiki/Donald_R._Roberts
Andrew Leonard (August 27, 2008). "Monsanto's bane: The evil pigweed". Salon. http://www.salon.com/tech/htww/2008/08/27/monsantos_bane/index.html
"Palmer Amaranth (Pigweed)". Take Action Pesticide Resistance Management. 2020-09-21. Retrieved 2021-09-22. http://iwilltakeaction.com/weed/palmer-amaranth
Alyokhin, A.; Baker, M.; Mota-Sanchez, D.; Dively, G.; Grafius, E. (2008). "Colorado potato beetle resistance to insecticides". American Journal of Potato Research. 85 (6): 395–413. doi:10.1007/s12230-008-9052-0. S2CID 41206911. /wiki/Doi_(identifier)
Janmaat, Alida F.; Myers, Judith (2003-11-07). "Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni". Proceedings of the Royal Society of London B: Biological Sciences. 270 (1530): 2263–2270. doi:10.1098/rspb.2003.2497. ISSN 0962-8452. PMC 1691497. PMID 14613613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1691497
Soberon, Mario; Gao, Yulin; Bravo, Alejandra (2015). Soberón, M.; Gao, A.; Bravo, A. (eds.). Bt Resistance : Characterization and Strategies for GM Crops Producing Bacillus thuringiensis Toxins. CABI biotechnology series 4. CABI (Centre for Agriculture and Bioscience International). pp. 88–89/xii–213. doi:10.1079/9781780644370.0000. ISBN 9781780644370.
This book cites this research.
Kain, Wendy C.; Zhao, Jian-Zhou; Janmaat, Alida F.; Myers, Judith; Shelton, Anthony M.; Wang, Ping (2004). "Inheritance of Resistance to Bacillus thuringiensis Cry1Ac Toxin in a Greenhouse-Derived Strain of Cabbage Looper (Lepidoptera: Noctuidae)". Journal of Economic Entomology. 97 (6): 2073–2078. doi:10.1603/0022-0493-97.6.2073. PMID 15666767. S2CID 13920351.[permanent dead link]
9781780644370
Endepols, Stefan; Buckle, Alan; Eason, Charlie; Pelz, Hans-Joachim; Meyer, Adrian; Berny, Philippe; Baert, Kristof; Prescott, Colin (September 2015). "RRAC guidelines on Anticoagulant Rodenticide Resistance Management" (PDF). RRAC. Brussels: CropLife. pp. 1–29. https://croplife.org/wp-content/uploads/2015/10/Rodenticide-Resistance-Strategy_Sept2015v3.pdf
Jourdan J, El Toum Abdel Fadil S, Oehlmann J, Hupało K (2024). "Rapid development of increased neonicotinoid tolerance in non-target freshwater amphipods". Environment International. 183: 108368. doi:10.1016/j.envint.2023.108368. https://doi.org/10.1016%2Fj.envint.2023.108368
Roberts, Donald R.; Andre, Richard G. (1994-01-01). "Insecticide Resistance Issues in Vector-Borne Disease Control". The American Journal of Tropical Medicine and Hygiene. 50 (6 Supplemental). American Society of Tropical Medicine and Hygiene: 21–34. doi:10.4269/ajtmh.1994.50.21. ISSN 0002-9637. PMID 8024082. /wiki/Donald_R._Roberts
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
Daly H, Doyen JT, and Purcell AH III (1998), Introduction to insect biology and diversity, 2nd edition. Oxford University Press. New York, New York. Chapter 14, Pages 279-300.
Berenbaum, May (1995). Bugs In The System: Insects And Their Impact On Human Affairs. Reading, Mass: Addison-Wesley. pp. xvi+377. ISBN 978-0-201-62499-1. OCLC 30157272. 978-0-201-62499-1
Yu, Simon J. (2008). The Toxicology and Biochemistry of Insecticides. Boca Raton: CRC Press/Taylor & Francis. p. 296. ISBN 978-1-4200-5975-5. OCLC 190620703. ISBN 1420059750. 978-1-4200-5975-5
David, Mariana Rocha; Garcia, Gabriela Azambuja; Valle, Denise; Maciel-De-Freitas, Rafael (2018). "Insecticide Resistance and Fitness: The Case of Four Aedes aegypti Populations from Different Brazilian Regions". BioMed Research International. 2018: 1–12. doi:10.1155/2018/6257860. PMC 6198578. PMID 30402487. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198578
Stenersen, J. 2004. Chemical Pesticides: Mode of Action and Toxicology. CRC Press, Boca Raton.
Marino M. (August 2007), Blowies inspire pesticide attack: Blowfly maggots and dog-wash play starring roles in the story of a remarkable environmental clean-up technology Archived 2008-02-18 at the Wayback Machine. Solve, Issue 12. CSIRO Enquiries. Retrieved on 2007-10-03. http://www.solve.csiro.au/0807/article8.htm
Dhole, Sumit; Lloyd, Alun L.; Gould, Fred (2020-11-02). "Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex". Annual Review of Ecology, Evolution, and Systematics. 51 (1). Annual Reviews: 505–531. arXiv:2005.01838. doi:10.1146/annurev-ecolsys-031120-101013. ISSN 1543-592X. PMC 8340601. PMID 34366722. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340601
Jakobson, Christopher M.; Jarosz, Daniel F. (2020-11-23). "What Has a Century of Quantitative Genetics Taught Us About Nature's Genetic Tool Kit?". Annual Review of Genetics. 54 (1). Annual Reviews: 439–464. doi:10.1146/annurev-genet-021920-102037. ISSN 0066-4197. PMID 32897739. S2CID 221570237. /wiki/Annual_Review_of_Genetics
Waddington, Donald V; Carrow, Robert N; Shearman, Robert C (1992). Turfgrass. Madison, Wisconsin, United States: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. p. 682. ISBN 978-0-89118-108-8. OCLC 25048047. [It] is necessary to determine if the cause of the problem is actually resistance, an application problem, or perhaps enhanced microbial degradation of the pesticide. 978-0-89118-108-8
Corbel, Vincent; Achee, Nicole L.; Chandre, Fabrice; Coulibaly, Mamadou B.; Dusfour, Isabelle; Fonseca, Dina M.; Grieco, John; Juntarajumnong, Waraporn; Lenhart, Audrey; Martins, Ademir J.; Moyes, Catherine; Ng, Lee Ching; Pinto, João; Raghavendra, Kamaraju; Vatandoost, Hassan; Vontas, John; Weetman, David; Fouque, Florence; Velayudhan, Raman; David, Jean-Philippe (2016-12-01). Barrera, Roberto (ed.). "Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN)". PLOS Neglected Tropical Diseases. 10 (12). Public Library of Science (PLoS): e0005054. doi:10.1371/journal.pntd.0005054. ISSN 1935-2735. PMC 5131894. PMID 27906961. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131894
"WIN network / IRD". WIN network / Research Institute for Development (in French). 2020-12-02. Retrieved 2021-01-03. http://win-network.ird.fr/
"Worldwide Insecticide Resistance Network (WIN)". MIVEGEC (in French). Retrieved 2021-01-03. http://www.mivegec.ird.fr/fr/worldwide-insecticide-resistance-network-win
"New global network tracking insecticide resistance on vectors of arboviruses". World Health Organization. 2016-03-30. Retrieved 2021-01-03. http://www.who.int/tdr/news/2016/global-net-track-insecticide-resist/en/
Corbel, Vincent; Achee, Nicole L.; Chandre, Fabrice; Coulibaly, Mamadou B.; Dusfour, Isabelle; Fonseca, Dina M.; Grieco, John; Juntarajumnong, Waraporn; Lenhart, Audrey; Martins, Ademir J.; Moyes, Catherine; Ng, Lee Ching; Pinto, João; Raghavendra, Kamaraju; Vatandoost, Hassan; Vontas, John; Weetman, David; Fouque, Florence; Velayudhan, Raman; David, Jean-Philippe (2016-12-01). Barrera, Roberto (ed.). "Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN)". PLOS Neglected Tropical Diseases. 10 (12). Public Library of Science (PLoS): e0005054. doi:10.1371/journal.pntd.0005054. ISSN 1935-2735. PMC 5131894. PMID 27906961. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131894
"WIN network / IRD". WIN network / Research Institute for Development (in French). 2020-12-02. Retrieved 2021-01-03. http://win-network.ird.fr/
"Worldwide Insecticide Resistance Network (WIN)". MIVEGEC (in French). Retrieved 2021-01-03. http://www.mivegec.ird.fr/fr/worldwide-insecticide-resistance-network-win
"New global network tracking insecticide resistance on vectors of arboviruses". World Health Organization. 2016-03-30. Retrieved 2021-01-03. http://www.who.int/tdr/news/2016/global-net-track-insecticide-resist/en/
Chris Boerboom (March 2001), Glyphosate resistant weeds. Weed Science - University of Wisconsin. Retrieved on September 15, 2007 https://web.archive.org/web/20071220152856/http://128.104.239.6/uw_weeds/extension/articles/glyphres.htm
Onstad, D.W. 2008. Insect Resistance Management. Elsevier: Amsterdam.
Graeme Murphy (December 1, 2005), Resistance Management - Pesticide Rotation Archived 2007-10-13 at the Wayback Machine. Ontario Ministry of Agriculture, Food and Rural Affairs. Retrieved on September 15, 2007 http://www.omafra.gov.on.ca/english/crops/hort/news/grower/2005/12gn05a2.htm
FRAC (Fungicide Resistance Action Committee) (March 2021). "FRAC Code List ©*2021: Fungal control agents sorted by cross resistance pattern and mode of action (including coding for FRAC Groups on product labels)" (PDF). /wiki/Fungicide_Resistance_Action_Committee
Weed Science Society of America. "Summary of Herbicide Mechanism of Action According to the Weed Science Society of America (WSSA)" (PDF). /wiki/Weed_Science_Society_of_America
Heap, Ian. "HERBICIDE MODE OF ACTION TABLE". http://www.weedscience.org/Documents/ShowDocuments.aspx?DocumentID=1192
"HRAC MOA 2020 Revision Description and Master Herbicide List". Herbicide Resistance Action Committee. 2020-09-14. Retrieved 2021-04-01. http://hracglobal.com/tools/hrac-moa-2020-revision-description-and-master-herbicide-list
"Interactive MoA Classification". Insecticide Resistance Action Committee. 2020-09-16. Retrieved 2021-04-01. http://irac-online.org/modes-of-action/
United States Environmental Protection Agency. "PESTICIDE REGISTRATION NOTICE (PRN) 2017-1 NOTICE TO MANUFACTURERS, PRODUCERS, PRODUCERS AND REGISTRANTS OF PESTICIDE PRODUCTS AND DEVICES" (PDF). /wiki/United_States_Environmental_Protection_Agency
"Colorado Potato Beetle Damage and Life History". Archived from the original on 2011-06-06. https://web.archive.org/web/20110606000511/http://resistance.potatobeetle.org/management.html
Chris Boerboom (March 2001), Glyphosate resistant weeds. Weed Science - University of Wisconsin. Retrieved on September 15, 2007 https://web.archive.org/web/20071220152856/http://128.104.239.6/uw_weeds/extension/articles/glyphres.htm
Service, Robert F. (20 September 2013). "What Happens When Weed Killers Stop Killing?". Science. 341 (6152): 1329. doi:10.1126/science.341.6152.1329. PMID 24052282. https://www.science.org/doi/full/10.1126/science.341.6152.1329
Service, Robert F. (20 September 2013). "What Happens When Weed Killers Stop Killing?". Science. 341 (6152): 1329. doi:10.1126/science.341.6152.1329. PMID 24052282. https://www.science.org/doi/full/10.1126/science.341.6152.1329
Service, Robert F. (20 September 2013). "What Happens When Weed Killers Stop Killing?". Science. 341 (6152): 1329. doi:10.1126/science.341.6152.1329. PMID 24052282. https://www.science.org/doi/full/10.1126/science.341.6152.1329
Service, Robert F. (20 September 2013). "What Happens When Weed Killers Stop Killing?". Science. 341 (6152): 1329. doi:10.1126/science.341.6152.1329. PMID 24052282. https://www.science.org/doi/full/10.1126/science.341.6152.1329
Service, Robert F. (20 September 2013). "What Happens When Weed Killers Stop Killing?". Science. 341 (6152): 1329. doi:10.1126/science.341.6152.1329. PMID 24052282. https://www.science.org/doi/full/10.1126/science.341.6152.1329
Service, Robert F. (20 September 2013). "What Happens When Weed Killers Stop Killing?". Science. 341 (6152): 1329. doi:10.1126/science.341.6152.1329. PMID 24052282. https://www.science.org/doi/full/10.1126/science.341.6152.1329
Service, Robert F. (20 September 2013). "What Happens When Weed Killers Stop Killing?". Science. 341 (6152): 1329. doi:10.1126/science.341.6152.1329. PMID 24052282. https://www.science.org/doi/full/10.1126/science.341.6152.1329
Gassmann, Aaron J.; Petzold-Maxwell, Jennifer L.; Clifton, Eric H.; Dunbar, Mike W.; Hoffmann, Amanda M.; Ingber, David A.; Keweshan, Ryan S. (April 8, 2014). "Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize" (PDF). PNAS. 111 (14): 5141–5146. Bibcode:2014PNAS..111.5141G. doi:10.1073/pnas.1317179111. PMC 3986160. PMID 24639498. http://www.pnas.org/content/111/14/5141.full.pdf
Kaskey, Jack (June 11, 2014). "War on Cornfield Pest Sparks Clash Over Insecticide". Bloomberg News. https://www.bloomberg.com/news/2014-06-10/war-on-cornfield-pest-sparks-clash-over-insecticide.html