A function is called antilinear or conjugate linear if it is additive and conjugate homogeneous. An antilinear functional on a vector space V {\displaystyle V} is a scalar-valued antilinear map.
A function f {\displaystyle f} is called additive if f ( x + y ) = f ( x ) + f ( y ) for all vectors x , y {\displaystyle f(x+y)=f(x)+f(y)\quad {\text{ for all vectors }}x,y} while it is called conjugate homogeneous if f ( a x ) = a ¯ f ( x ) for all vectors x and all scalars a . {\displaystyle f(ax)={\overline {a}}f(x)\quad {\text{ for all vectors }}x{\text{ and all scalars }}a.} In contrast, a linear map is a function that is additive and homogeneous, where f {\displaystyle f} is called homogeneous if f ( a x ) = a f ( x ) for all vectors x and all scalars a . {\displaystyle f(ax)=af(x)\quad {\text{ for all vectors }}x{\text{ and all scalars }}a.}
An antilinear map f : V → W {\displaystyle f:V\to W} may be equivalently described in terms of the linear map f ¯ : V → W ¯ {\displaystyle {\overline {f}}:V\to {\overline {W}}} from V {\displaystyle V} to the complex conjugate vector space W ¯ . {\displaystyle {\overline {W}}.}
Given a complex vector space V {\displaystyle V} of rank 1, we can construct an anti-linear dual map which is an anti-linear map l : V → C {\displaystyle l:V\to \mathbb {C} } sending an element x 1 + i y 1 {\displaystyle x_{1}+iy_{1}} for x 1 , y 1 ∈ R {\displaystyle x_{1},y_{1}\in \mathbb {R} } to x 1 + i y 1 ↦ a 1 x 1 − i b 1 y 1 {\displaystyle x_{1}+iy_{1}\mapsto a_{1}x_{1}-ib_{1}y_{1}} for some fixed real numbers a 1 , b 1 . {\displaystyle a_{1},b_{1}.} We can extend this to any finite dimensional complex vector space, where if we write out the standard basis e 1 , … , e n {\displaystyle e_{1},\ldots ,e_{n}} and each standard basis element as e k = x k + i y k {\displaystyle e_{k}=x_{k}+iy_{k}} then an anti-linear complex map to C {\displaystyle \mathbb {C} } will be of the form ∑ k x k + i y k ↦ ∑ k a k x k − i b k y k {\displaystyle \sum _{k}x_{k}+iy_{k}\mapsto \sum _{k}a_{k}x_{k}-ib_{k}y_{k}} for a k , b k ∈ R . {\displaystyle a_{k},b_{k}\in \mathbb {R} .}
The anti-linear dual1pg 36 of a complex vector space V {\displaystyle V} Hom C ¯ ( V , C ) {\displaystyle \operatorname {Hom} _{\overline {\mathbb {C} }}(V,\mathbb {C} )} is a special example because it is isomorphic to the real dual of the underlying real vector space of V , {\displaystyle V,} Hom R ( V , R ) . {\displaystyle {\text{Hom}}_{\mathbb {R} }(V,\mathbb {R} ).} This is given by the map sending an anti-linear map ℓ : V → C {\displaystyle \ell :V\to \mathbb {C} } to Im ( ℓ ) : V → R {\displaystyle \operatorname {Im} (\ell ):V\to \mathbb {R} } In the other direction, there is the inverse map sending a real dual vector λ : V → R {\displaystyle \lambda :V\to \mathbb {R} } to ℓ ( v ) = − λ ( i v ) + i λ ( v ) {\displaystyle \ell (v)=-\lambda (iv)+i\lambda (v)} giving the desired map.
The composite of two antilinear maps is a linear map. The class of semilinear maps generalizes the class of antilinear maps.
The vector space of all antilinear forms on a vector space X {\displaystyle X} is called the algebraic anti-dual space of X . {\displaystyle X.} If X {\displaystyle X} is a topological vector space, then the vector space of all continuous antilinear functionals on X , {\displaystyle X,} denoted by X ¯ ′ , {\textstyle {\overline {X}}^{\prime },} is called the continuous anti-dual space or simply the anti-dual space of X {\displaystyle X} 2 if no confusion can arise.
When H {\displaystyle H} is a normed space then the canonical norm on the (continuous) anti-dual space X ¯ ′ , {\textstyle {\overline {X}}^{\prime },} denoted by ‖ f ‖ X ¯ ′ , {\textstyle \|f\|_{{\overline {X}}^{\prime }},} is defined by using this same equation:3 ‖ f ‖ X ¯ ′ := sup ‖ x ‖ ≤ 1 , x ∈ X | f ( x ) | for every f ∈ X ¯ ′ . {\displaystyle \|f\|_{{\overline {X}}^{\prime }}~:=~\sup _{\|x\|\leq 1,x\in X}|f(x)|\quad {\text{ for every }}f\in {\overline {X}}^{\prime }.}
This formula is identical to the formula for the dual norm on the continuous dual space X ′ {\displaystyle X^{\prime }} of X , {\displaystyle X,} which is defined by4 ‖ f ‖ X ′ := sup ‖ x ‖ ≤ 1 , x ∈ X | f ( x ) | for every f ∈ X ′ . {\displaystyle \|f\|_{X^{\prime }}~:=~\sup _{\|x\|\leq 1,x\in X}|f(x)|\quad {\text{ for every }}f\in X^{\prime }.}
Canonical isometry between the dual and anti-dual
The complex conjugate f ¯ {\displaystyle {\overline {f}}} of a functional f {\displaystyle f} is defined by sending x ∈ domain f {\displaystyle x\in \operatorname {domain} f} to f ( x ) ¯ . {\textstyle {\overline {f(x)}}.} It satisfies ‖ f ‖ X ′ = ‖ f ¯ ‖ X ¯ ′ and ‖ g ¯ ‖ X ′ = ‖ g ‖ X ¯ ′ {\displaystyle \|f\|_{X^{\prime }}~=~\left\|{\overline {f}}\right\|_{{\overline {X}}^{\prime }}\quad {\text{ and }}\quad \left\|{\overline {g}}\right\|_{X^{\prime }}~=~\|g\|_{{\overline {X}}^{\prime }}} for every f ∈ X ′ {\displaystyle f\in X^{\prime }} and every g ∈ X ¯ ′ . {\textstyle g\in {\overline {X}}^{\prime }.} This says exactly that the canonical antilinear bijection defined by Cong : X ′ → X ¯ ′ where Cong ( f ) := f ¯ {\displaystyle \operatorname {Cong} ~:~X^{\prime }\to {\overline {X}}^{\prime }\quad {\text{ where }}\quad \operatorname {Cong} (f):={\overline {f}}} as well as its inverse Cong − 1 : X ¯ ′ → X ′ {\displaystyle \operatorname {Cong} ^{-1}~:~{\overline {X}}^{\prime }\to X^{\prime }} are antilinear isometries and consequently also homeomorphisms.
If F = R {\displaystyle \mathbb {F} =\mathbb {R} } then X ′ = X ¯ ′ {\displaystyle X^{\prime }={\overline {X}}^{\prime }} and this canonical map Cong : X ′ → X ¯ ′ {\displaystyle \operatorname {Cong} :X^{\prime }\to {\overline {X}}^{\prime }} reduces down to the identity map.
Inner product spaces
If X {\displaystyle X} is an inner product space then both the canonical norm on X ′ {\displaystyle X^{\prime }} and on X ¯ ′ {\displaystyle {\overline {X}}^{\prime }} satisfies the parallelogram law, which means that the polarization identity can be used to define a canonical inner product on X ′ {\displaystyle X^{\prime }} and also on X ¯ ′ , {\displaystyle {\overline {X}}^{\prime },} which this article will denote by the notations ⟨ f , g ⟩ X ′ := ⟨ g ∣ f ⟩ X ′ and ⟨ f , g ⟩ X ¯ ′ := ⟨ g ∣ f ⟩ X ¯ ′ {\displaystyle \langle f,g\rangle _{X^{\prime }}:=\langle g\mid f\rangle _{X^{\prime }}\quad {\text{ and }}\quad \langle f,g\rangle _{{\overline {X}}^{\prime }}:=\langle g\mid f\rangle _{{\overline {X}}^{\prime }}} where this inner product makes X ′ {\displaystyle X^{\prime }} and X ¯ ′ {\displaystyle {\overline {X}}^{\prime }} into Hilbert spaces. The inner products ⟨ f , g ⟩ X ′ {\textstyle \langle f,g\rangle _{X^{\prime }}} and ⟨ f , g ⟩ X ¯ ′ {\textstyle \langle f,g\rangle _{{\overline {X}}^{\prime }}} are antilinear in their second arguments. Moreover, the canonical norm induced by this inner product (that is, the norm defined by f ↦ ⟨ f , f ⟩ X ′ {\textstyle f\mapsto {\sqrt {\left\langle f,f\right\rangle _{X^{\prime }}}}} ) is consistent with the dual norm (that is, as defined above by the supremum over the unit ball); explicitly, this means that the following holds for every f ∈ X ′ : {\displaystyle f\in X^{\prime }:} sup ‖ x ‖ ≤ 1 , x ∈ X | f ( x ) | = ‖ f ‖ X ′ = ⟨ f , f ⟩ X ′ = ⟨ f ∣ f ⟩ X ′ . {\displaystyle \sup _{\|x\|\leq 1,x\in X}|f(x)|=\|f\|_{X^{\prime }}~=~{\sqrt {\langle f,f\rangle _{X^{\prime }}}}~=~{\sqrt {\langle f\mid f\rangle _{X^{\prime }}}}.}
If X {\displaystyle X} is an inner product space then the inner products on the dual space X ′ {\displaystyle X^{\prime }} and the anti-dual space X ¯ ′ , {\textstyle {\overline {X}}^{\prime },} denoted respectively by ⟨ ⋅ , ⋅ ⟩ X ′ {\textstyle \langle \,\cdot \,,\,\cdot \,\rangle _{X^{\prime }}} and ⟨ ⋅ , ⋅ ⟩ X ¯ ′ , {\textstyle \langle \,\cdot \,,\,\cdot \,\rangle _{{\overline {X}}^{\prime }},} are related by ⟨ f ¯ | g ¯ ⟩ X ¯ ′ = ⟨ f | g ⟩ X ′ ¯ = ⟨ g | f ⟩ X ′ for all f , g ∈ X ′ {\displaystyle \langle \,{\overline {f}}\,|\,{\overline {g}}\,\rangle _{{\overline {X}}^{\prime }}={\overline {\langle \,f\,|\,g\,\rangle _{X^{\prime }}}}=\langle \,g\,|\,f\,\rangle _{X^{\prime }}\qquad {\text{ for all }}f,g\in X^{\prime }} and ⟨ f ¯ | g ¯ ⟩ X ′ = ⟨ f | g ⟩ X ¯ ′ ¯ = ⟨ g | f ⟩ X ¯ ′ for all f , g ∈ X ¯ ′ . {\displaystyle \langle \,{\overline {f}}\,|\,{\overline {g}}\,\rangle _{X^{\prime }}={\overline {\langle \,f\,|\,g\,\rangle _{{\overline {X}}^{\prime }}}}=\langle \,g\,|\,f\,\rangle _{{\overline {X}}^{\prime }}\qquad {\text{ for all }}f,g\in {\overline {X}}^{\prime }.}
Birkenhake, Christina (2004). Complex Abelian Varieties. Herbert Lange (Second, augmented ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-06307-1. OCLC 851380558. 978-3-662-06307-1 ↩
Trèves 2006, pp. 112–123. - Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322. https://search.worldcat.org/oclc/853623322 ↩