In the 21st century, computer technology and software are becoming portable and powerful enough to take on some of the more mundane tasks a geologist must perform in the field, such as precisely locating oneself with a GPS unit, displaying multiple images (maps, satellite images, aerial photography, etc.), plotting strike and dip symbols, and color-coding different physical characteristics of a lithology or contact type (e.g., unconformity) between rock strata. Additionally, computers can now perform some tasks that were difficult to accomplish in the field, for example, handwriting or voice recognition and annotating photographs on the spot.
The initial cost of digital geologic computing and supporting equipment may be significant. In addition, equipment and software must be replaced occasionally due to damage, loss, and obsolescence. Products moving through the market are quickly discontinued as technology and consumer interests evolve. A product that works well for digital mapping may not be available for purchase the following year; however, testing multiple brands and generations of equipment and software is prohibitively expensive.
Some features of digital mapping equipment are common to both survey or reconnaissance mapping and “traditional” comprehensive mapping. The capture of less data-intensive reconnaissance mapping or survey data in the field can be accomplished by less robust databases and GIS programs, and hardware with a smaller screen size.
Hardware and software only recently (in 2000) became available that can satisfy most of the criteria necessary for digitally capturing "traditional" mapping data.
Kramer, John (2000). "Digital Mapping Systems for Field Data Collection". Digital Mapping Techniques '00 -- Workshop Proceedings. U.S. Geological Survey. Open-File Report 00-325. https://pubs.usgs.gov/of/2000/of00-325/kramer.html
Barnes, John; Lisle, Richard (2004). Basic Geological Mapping. Chichester, West Sussex PO19 8SQ, England: John Wiley & Sons Ltd. pp. 1–204. ISBN 978-0-470-84986-6.{{cite book}}: CS1 maint: location (link) 978-0-470-84986-6
Sprinkel, Douglas; Brown, Kent (2008), "Using digital technology in the field" (PDF), Survey Notes, 40 (1): 1–2 http://geology.utah.gov/surveynotes/snt40-1.pdf
McCaffrey, K.; Jones, R.; Holdsworth, R.; Wilson, R.; Clegg, P.; Imber, J.; Holliman, N.; Trinks, I. (2005), "Unlocking the spatial dimension- digital technologies and the future of geoscience fieldwork" (PDF), Journal of the Geological Society, London, 162 (6): 927–938, Bibcode:2005JGSoc.162..927M, CiteSeerX 10.1.1.126.8297, doi:10.1144/0016-764905-017, S2CID 46371739 http://geology.utah.gov/surveynotes/snt40-1.pdf
Athey, Jennifer; Freeman, Lawrence; Woods, Kenneth (2008), "The transition from traditional to digital mapping: Maintaining data quality while increasing geologic mapping efficiency in Alaska", Newsletter 2008-2, Alaska Division of Geological & Geophysical Surveys, pp. 1–12 http://www.dggs.dnr.state.ak.us/pubs/pubs?reqtype=citation&ID=17821
Marcum, Deanna; Friedlander, Amy (May 2003), "Keepers of the Crumbling Culture: What Digital Preservation Can Learn from Library History", D-Lib Magazine, 9 (5), doi:10.1045/may2003-friedlander /wiki/Doi_(identifier)
Berque, Dave; Prey, Jane; Reed, Robert (2006). Impact of Tablet PC's and Pen-based Technology on Education : Vignettes, Evaluations, And Future Directions. Purdue University Press. pp. 1–200. ISBN 978-1-55753-434-7. 978-1-55753-434-7
Coolbaugh, Mark; Sladek, Chris; Kratt, Chris; Edmondo, Gary (Aug 29 – Sep 1, 2004), "Digital mapping of structurally controlled geothermal features with GPS units and pocket computers" (PDF), Proceedings, Annual Meeting of Geothermal Resources Council Transactions, vol. 28, Palm Springs, CA, pp. 321–325, archived from the original (PDF) on 2010-05-28 https://web.archive.org/web/20100528142315/http://www.unr.edu/Geothermal/pdffiles/CoolbaughDigGRC04.pdf
Montero, Irene; Brimhall, George; Alpers, Charles; Swayze, Gregg (15 February 2005), "Characterization of waste rock associated with acid drainage at the Penn Mine, California, by ground-based visible to short-wave infrared reflectance spectroscopy assisted by digital mapping", Chemical Geology, 215 (5): 453–472, Bibcode:2005ChGeo.215..453M, doi:10.1016/j.chemgeo.2004.06.045 http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1355&context=usgsstaffpub
Athey, Jennifer; Freeman, Lawrence; Woods, Kenneth (2008), "The transition from traditional to digital mapping: Maintaining data quality while increasing geologic mapping efficiency in Alaska", Newsletter 2008-2, Alaska Division of Geological & Geophysical Surveys, pp. 1–12 http://www.dggs.dnr.state.ak.us/pubs/pubs?reqtype=citation&ID=17821
Clegg, P.; Bruciatelli, L.; Domingos, F.; Jones, R.; De Donatis, M.; Wilson, R. (2006), "Digital geological mapping with tablet PC and PDA: A comparison" (PDF), Computers & Geosciences, 32 (10): 1682–1698, Bibcode:2006CG.....32.1682C, doi:10.1016/j.cageo.2006.03.007 http://www.dur.ac.uk/r.r.jones/Downloads/C&G2006_v32_10_1682_Clegg.pdf
Edmondo, Gary (2002). "Field Digital geologic field mapping using ArcPad". Digital Mapping Techniques '02 -- Workshop Proceedings. U.S. Geological Survey. pp. 129–134. Open-File Report 02-370. https://pubs.usgs.gov/of/2002/of02-370/edmondo.html
Brodaric, Boyan (1997). "Field data capture and manipulation using GSC FIELDLOG v3.0". Digital Mapping Techniques '97. U.S. Geological Survey. pp. 77–81. Open-File Report 97-269. https://pubs.usgs.gov/of/1997/of97-269/brodaric.html
Brodaric, Boyan (February 2004). "The design of GSC FieldLog: ontology-based software for computer-aided geological field mapping". Computers & Geosciences. 30 (1): 5–20. Bibcode:2004CG.....30....5B. doi:10.1016/j.cageo.2003.08.009. /wiki/Bibcode_(identifier)
Walker, J.D., and Black, R.A, 2000, Mapping the outcrop: Geotimes, vol. 45, no. 11, p. 28-31. "Digital Field Mapping, Department of Geology, University of Kansas". Archived from the original on 2008-08-28. Retrieved 2013-08-05. https://web.archive.org/web/20080828074812/http://www.geo.ku.edu/programs/tectonics/digitalmapping/mappingwebpage.html
Edmondo, Gary (2002). "Field Digital geologic field mapping using ArcPad". Digital Mapping Techniques '02 -- Workshop Proceedings. U.S. Geological Survey. pp. 129–134. Open-File Report 02-370. https://pubs.usgs.gov/of/2002/of02-370/edmondo.html
Jordan CJ, Bee EJ, Smith NA, Lawley RS, Ford J, Howard AS, Laxton JL (2005). "The development of Digital Field Data Collection systems to fulfil the British Geological Survey mapping requirements". GIS and Spatial Analysis : Annual Conference of the International Association for Mathematical Geology. Vol. 2. Toronto. pp. 886–891. http://nora.nerc.ac.uk/8434
Knoop, Peter A.; van der Pluijm, Ben (2006). "GeoPad: Tablet PC-enabled Field Science Education." (PDF). In Berque, Dave; Prey, Jane; Reed, Rob (eds.). The Impact of Pen-based Technology of Education: Vignettes, Evaluations, and Future Directions. Purdue University Press. https://ben.earth.lsa.umich.edu/Publications/06_GeoPad.pdf
Walker, J.D., and Black, R.A, 2000, Mapping the outcrop: Geotimes, vol. 45, no. 11, p. 28-31. "Digital Field Mapping, Department of Geology, University of Kansas". Archived from the original on 2008-08-28. Retrieved 2013-08-05. https://web.archive.org/web/20080828074812/http://www.geo.ku.edu/programs/tectonics/digitalmapping/mappingwebpage.html
De Donatis, M.; Bruciatelli, L.; Susini, S. (2005). "MAP IT- a GIS/GPS software solution for digital mapping". Digital Mapping Techniques '05—Workshop Proceedings. U.S. Geological Survey. pp. 97–101. Open-File Report 2005-1428. https://pubs.usgs.gov/of/2005/1428/dedonatis1/index.html
De Donatis, Mauro; Bruciatelli, L. (June 2006), "MAP IT: the GIS software for field mapping with tablet pc", Computers & Geosciences, 32 (5): 673–680, Bibcode:2006CG.....32..673D, doi:10.1016/j.cageo.2005.09.003 /wiki/Bibcode_(identifier)
Brown, Kent; Sprinkel, Douglas (2008). "Geologic Field Mapping Using a Rugged Tablet Computer" (PDF). In Soller, David R. (ed.). Digital Mapping Techniques '07 - Workshop Proceedings. U.S. Geological Survey. pp. 53–58. Open-File Report 2008-1385. https://pubs.usgs.gov/of/2008/1385/pdf/brown.pdf
Thoms, Evan; Haugerud, Ralph (2006), "GDA (Geologic Data Assistant), an ArcPad extension for geological mapping: Code, prerequisites, and instructions", USGS Report, Open-File Report: 1–23, Bibcode:2006usgs.rept...13E, doi:10.3133/ofr20061097, Open-File Report 2006-1097 https://pubs.usgs.gov/of/2006/1097/
Edmondo, Gary (2002). "Field Digital geologic field mapping using ArcPad". Digital Mapping Techniques '02 -- Workshop Proceedings. U.S. Geological Survey. pp. 129–134. Open-File Report 02-370. https://pubs.usgs.gov/of/2002/of02-370/edmondo.html
Brimhall, George; Vanegas, Abel (2001). "Removing Science Workflow Barriers to Adoption of Digital Geological Mapping by Using the GeoMapper Universal Program and Visual User Interface". Digital Mapping Techniques '01 -- Workshop Proceedings. U.S. Geological Survey. Open-File Report 01-223. https://pubs.usgs.gov/of/2001/of01-223/brimhall.html
Brimhall, G.; Vanegas, A.; Lerch, D. (2002). "GeoMapper program for paperless field mapping with seamless map production in ESRI ArcMap and GeoLogger for drill-hole data capture: applications in geology, astronomy, environmental remediation, and raised-relief models". Digital Mapping Techniques '02 -- Workshop Proceedings. U.S. Geological Survey. pp. 141–152. Open-File Report 02-370. https://pubs.usgs.gov/of/2002/of02-370/brimhall.html
Jordan, Colm (May 10–13, 2009). "SIGMAmobile, the British Geological Survey digital field mapping system in action" (PDF). Digital Mapping Techniques '09. Morgantown, West Virginia. https://ngmdb.usgs.gov/Info/dmt/docs/DMT09_Jordan.pdf
De Donatis, Mauro (May 10–13, 2009). "BeeGIS: a new open source and multiplatform field GIS" (PDF). Digital Mapping Techniques '09. Morgantown, West Virginia. https://pubs.usgs.gov/of/2010/1335/pdf/usgs_of2010-1335_DeDonatis.pdf
Bond, Clare; Clelland, S.; Butler, R. (31 October – 3 November 2010). "Applying Digital Mapping Techniques to Classic Geological Areas in North West Scotland and the French Alps - Aiding Structural Geology Prediction Through 3D visualisation and Model Building". 2010 GSA Denver Annual Meeting (Abstract). Denver, Colorado. http://gsa.confex.com/gsa/2010AM/finalprogram/abstract_179600.htm