A topological space
X
{\displaystyle X}
is called a Baire space if it satisfies any of the following equivalent conditions:
The equivalence between these definitions is based on the associated properties of complementary subsets of
X
{\displaystyle X}
(that is, of a set
A
⊆
X
{\displaystyle A\subseteq X}
and of its complement
X
∖
A
{\displaystyle X\setminus A}
) as given in the table below.
The Baire category theorem gives sufficient conditions for a topological space to be a Baire space.
One should note however that there are plenty of spaces that are Baire spaces without satisfying the conditions of the Baire category theorem, as shown in the Examples section below.
Let
f
n
:
X
→
Y
{\displaystyle f_{n}:X\to Y}
be a sequence of continuous functions with pointwise limit
f
:
X
→
Y
.
{\displaystyle f:X\to Y.}
If
X
{\displaystyle X}
is a Baire space, then the points where
f
{\displaystyle f}
is not continuous is a meagre set in
X
{\displaystyle X}
and the set of points where
f
{\displaystyle f}
is continuous is dense in
X
.
{\displaystyle X.}
A special case of this is the uniform boundedness principle.
The following are examples of Baire spaces for which the Baire category theorem does not apply, because these spaces are not locally compact and not completely metrizable:
Munkres 2000, p. 295. - Munkres, James R. (2000). Topology. Prentice-Hall. ISBN 0-13-181629-2.
"Your favourite application of the Baire Category Theorem". Mathematics Stack Exchange. https://math.stackexchange.com/q/165696
"Classic applications of Baire category theorem". MathOverflow. https://mathoverflow.net/questions/129666
Engelking 1989, Historical notes, p. 199. - Engelking, Ryszard (1989). General Topology. Heldermann Verlag, Berlin. ISBN 3-88538-006-4.
Bourbaki 1989, p. 192. - Bourbaki, Nicolas (1989) [1967]. General Topology 2: Chapters 5–10 [Topologie Générale]. Éléments de mathématique. Vol. 4. Berlin New York: Springer Science & Business Media. ISBN 978-3-540-64563-4. OCLC 246032063. https://search.worldcat.org/oclc/246032063
Baire, R. (1899). "Sur les fonctions de variables réelles". Annali di Matematica Pura ed Applicata. 3: 1–123. doi:10.1007/BF02419243. https://books.google.com/books?id=cS4LAAAAYAAJ
Munkres 2000, p. 295. - Munkres, James R. (2000). Topology. Prentice-Hall. ISBN 0-13-181629-2.
Haworth & McCoy 1977, p. 11. - Haworth, R. C.; McCoy, R. A. (1977), Baire Spaces, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk http://eudml.org/doc/268479
Narici & Beckenstein 2011, pp. 390–391. - Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834. https://search.worldcat.org/oclc/144216834
As explained in the meagre set article, for an open set, being nonmeagre in the whole space is equivalent to being nonmeagre in itself. /wiki/Meagre_set
Kelley 1975, Theorem 34, p. 200. - Kelley, John L. (1975) [1955]. General Topology. Graduate Texts in Mathematics. Vol. 27 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-90125-1. OCLC 1365153. https://search.worldcat.org/oclc/1365153
Schechter 1996, Theorem 20.16, p. 537. - Schechter, Eric (1996). Handbook of Analysis and Its Foundations. San Diego, CA: Academic Press. ISBN 978-0-12-622760-4. OCLC 175294365. https://search.worldcat.org/oclc/175294365
Kelley 1975, Theorem 34, p. 200. - Kelley, John L. (1975) [1955]. General Topology. Graduate Texts in Mathematics. Vol. 27 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-90125-1. OCLC 1365153. https://search.worldcat.org/oclc/1365153
Schechter 1996, Theorem 20.18, p. 538. - Schechter, Eric (1996). Handbook of Analysis and Its Foundations. San Diego, CA: Academic Press. ISBN 978-0-12-622760-4. OCLC 175294365. https://search.worldcat.org/oclc/175294365
Haworth & McCoy 1977, Proposition 1.14. - Haworth, R. C.; McCoy, R. A. (1977), Baire Spaces, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk http://eudml.org/doc/268479
Haworth & McCoy 1977, Proposition 1.23. - Haworth, R. C.; McCoy, R. A. (1977), Baire Spaces, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk http://eudml.org/doc/268479
Ma, Dan (3 June 2012). "A Question About The Rational Numbers". Dan Ma's Topology Blog.Theorem 3 https://dantopology.wordpress.com/2012/06/02/a-question-about-the-rational-numbers/
Haworth & McCoy 1977, Proposition 1.16. - Haworth, R. C.; McCoy, R. A. (1977), Baire Spaces, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk http://eudml.org/doc/268479
Haworth & McCoy 1977, Proposition 1.17. - Haworth, R. C.; McCoy, R. A. (1977), Baire Spaces, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk http://eudml.org/doc/268479
Haworth & McCoy 1977, Theorem 1.15. - Haworth, R. C.; McCoy, R. A. (1977), Baire Spaces, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk http://eudml.org/doc/268479
Narici & Beckenstein 2011, Theorem 11.6.7, p. 391. - Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834. https://search.worldcat.org/oclc/144216834
Haworth & McCoy 1977, Corollary 1.22. - Haworth, R. C.; McCoy, R. A. (1977), Baire Spaces, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk http://eudml.org/doc/268479
Haworth & McCoy 1977, Proposition 1.20. - Haworth, R. C.; McCoy, R. A. (1977), Baire Spaces, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk http://eudml.org/doc/268479
Oxtoby, J. (1961). "Cartesian products of Baire spaces" (PDF). Fundamenta Mathematicae. 49 (2): 157–166. doi:10.4064/fm-49-2-157-166. http://matwbn.icm.edu.pl/ksiazki/fm/fm49/fm49113.pdf
Fleissner, W.; Kunen, K. (1978). "Barely Baire spaces" (PDF). Fundamenta Mathematicae. 101 (3): 229–240. doi:10.4064/fm-101-3-229-240. http://matwbn.icm.edu.pl/ksiazki/fm/fm101/fm101121.pdf
Bourbaki 1989, Exercise 17, p. 254. - Bourbaki, Nicolas (1989) [1967]. General Topology 2: Chapters 5–10 [Topologie Générale]. Éléments de mathématique. Vol. 4. Berlin New York: Springer Science & Business Media. ISBN 978-3-540-64563-4. OCLC 246032063. https://search.worldcat.org/oclc/246032063
Gierz et al. 2003, Corollary I-3.40.9, p. 114. - Gierz, G.; Hofmann, K. H.; Keimel, K.; Lawson, J. D.; Mislove, M. W.; Scott, D. S. (2003). Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications. Vol. 93. Cambridge University Press. ISBN 978-0521803380. https://archive.org/details/continuouslattic0000unse
"Intersection of two open dense sets is dense". Mathematics Stack Exchange. https://math.stackexchange.com/q/1143211
Narici & Beckenstein 2011, Theorem 11.8.6, p. 396. - Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834. https://search.worldcat.org/oclc/144216834
Wilansky 2013, p. 60. - Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114. https://search.worldcat.org/oclc/849801114
"The Sorgenfrey line is a Baire Space". Mathematics Stack Exchange. https://math.stackexchange.com/q/476821
"The Sorgenfrey plane and the Niemytzki plane are Baire spaces". Mathematics Stack Exchange. https://math.stackexchange.com/q/3848442
"The Sorgenfrey plane and the Niemytzki plane are Baire spaces". Mathematics Stack Exchange. https://math.stackexchange.com/q/3848442
"Example of a Baire metric space which is not completely metrizable". Mathematics Stack Exchange. https://math.stackexchange.com/q/3003649