The head region of the hippocampus is enlarged, and presents two or three rounded elevations or foot-like digitations, and hence it was named the pes hippocampi (pes meaning foot). Later this part was described as pes hippocampi major, with an adjacent bulge in the occipital horn of the lateral ventricle, described as pes hippocampi minor later renamed as the calcar avis. In 1786 Félix Vicq-d'Azyr published an authoritative description naming just the hippocampus but the term remained largely unused with no description of any function proposed until in the middle of the 20th century it was associated with memory.
The hippocampus has a generally similar appearance across the range of mammals, from egg-laying mammals such as the echidna, to humans and other primates. The hippocampal-size-to-body-size ratio broadly increases, being about twice as large for primates as for the echidna. It does not, however, increase at anywhere close to the rate of the neocortex-to-body-size ratio. Therefore, the hippocampus takes up a much larger fraction of the cortical mantle in rodents than in primates. In adult humans the volume of the hippocampus on each side of the brain is about 3.0 to 3.5 cm3 as compared to 320 to 420 cm3 for the volume of the neocortex. There is also a general relationship between the size of the hippocampus and spatial memory. When comparisons are made between similar species, those that have a greater capacity for spatial memory tend to have larger hippocampal volumes.
The hippocampus, and dentate gyrus that is folded into the hippocampal archicortex have the shape of a curved, rolled-up tube. The curve of the hippocampus (known as cornu Ammonis) uses the initial letters CA to name the hippocampal subfields CA1-CA4. CA4 is in fact the polymorphic layer or hilus of the dentate gyrus, but CA4 is still sometimes in use to describe the part of CA3 that inserts between the dentate gyrus regions or blades.
It can be distinguished as an area where the cortex narrows into a single layer of densely packed pyramidal neurons, which curl into a tight U shape. One edge of the "U," – (CA4) the hilus of the dentate gyrus, is embedded into the backward-facing, flexed dentate gyrus. In humans the hippocampus is described as having an anterior and posterior part; in other primates they are termed rostral and caudal, and in rodent literature they are the ventral and dorsal part. Both parts are of similar composition but belong to different neural circuits. The dentate gyrus combined with other hippocampal regions form a banana-like structure, with the two hippocampi joined at the stems by the commissure of fornix (also called the hippocampal commissure). In primates, the part of the hippocampus at the bottom, near the base of the temporal lobe, is much broader than the part at the top. This means that in cross-section the hippocampus can show a number of different shapes, depending on the angle and location of the cut.
In a cross-section of the hippocampus, including the dentate gyrus, several layers will be shown. The dentate gyrus has three layers of cells – the outer molecular layer, the middle granular layer, and the inner polymorphic layer also known as the hilus. The CA3 subfield has the following cell layers known as strata: lacunosum-moleculare, radiatum, lucidum, pyramidal, and oriens. CA2 and CA1 also have these layers except the lucidum stratum.
The input to the hippocampus (from varying cortical and subcortical structures) comes from the entorhinal cortex via the perforant path. The entorhinal cortex (EC) is strongly and reciprocally connected with many cortical and subcortical structures as well as with the brainstem. Different thalamic nuclei, (from the anterior and midline groups), the medial septal nucleus, the supramammillary nucleus of the hypothalamus, and the raphe nuclei and locus coeruleus of the brainstem all send axons to the EC, so that it serves as the interface between the neocortex and the other connections, and the hippocampus.
The major input to the hippocampus is through the entorhinal cortex (EC), whereas its major output is via CA1 to the subiculum. Information reaches CA1 via two main pathways, direct and indirect. Axons from the EC that originate in layer III are the origin of the direct perforant pathway and form synapses on the very distal apical dendrites of CA1 neurons. Conversely, axons originating from layer II are the origin of the indirect pathway, and information reaches CA1 via the trisynaptic circuit. In the initial part of this pathway, the axons project through the perforant pathway to the granule cells of the dentate gyrus (first synapse). From then, the information follows via the mossy cell fibres to CA3 (second synapse). From there, CA3 axons called Schaffer collaterals leave the deep part of the cell body and loop up to the apical dendrites and then extend to CA1 (third synapse). Axons from CA1 then project back to the entorhinal cortex, completing the circuit.
Several other connections play important roles in hippocampal function. Beyond the output to the EC, additional output pathways go to other cortical areas including the prefrontal cortex. A major output goes via the fornix to the lateral septal area and to the mammillary body of the hypothalamus (which the fornix interconnects with the hippocampus). The hippocampus receives modulatory input from the serotonin, norepinephrine, and dopamine systems, and from the nucleus reuniens of the thalamus to field CA1. A very important projection comes from the medial septal nucleus, which sends cholinergic, and gamma amino butyric acid (GABA) stimulating fibers (GABAergic fibers) to all parts of the hippocampus. The inputs from the medial septal nucleus play a key role in controlling the physiological state of the hippocampus; destruction of this nucleus abolishes the hippocampal theta rhythm and severely impairs certain types of memory.
In humans the head of the hippocampus is termed the anterior hippocampus, the body is the intermediate hippocampus, and the tail the posterior hippocampus. The subregions all serve different functions, project with different neural pathways, and have varying numbers of place cells. (In other primates the terms used are rostral and caudal, and in rodents they are termed ventral and dorsal). The posterior hippocampus serves for spatial memory, verbal memory, and learning of conceptual information. Using the radial arm maze in rats, lesions in the dorsal hippocampus were shown to cause spatial memory impairment. Its projecting pathways include the medial septal nucleus, and supramammillary nucleus. In the rat the dorsal hippocampus also has more place cells than both the ventral and intermediate hippocampal regions.
The intermediate hippocampus has overlapping characteristics with both the ventral and dorsal hippocampus. Studies in 2002, showed that alterations to the ventral hippocampus reduced the amount of information sent to the amygdala by the dorsal and ventral hippocampus, consequently altering fear conditioning in rats. In 2007, studies using anterograde tracing methods, located the moderate projections to two primary olfactory cortical areas and prelimbic areas of the medial prefrontal cortex. This region has the smallest number of place cells. The ventral hippocampus functions in fear conditioning and affective processes.
The second major line of thought relates the hippocampus to memory. Although it had historical precursors, this idea derived its main impetus from a famous report by American neurosurgeon William Beecher Scoville and British-Canadian neuropsychologist Brenda Milner. It described the results of surgical destruction of the hippocampi when trying to relieve epileptic seizures in an American man Henry Molaison, known until his death in 2008 as "Patient H.M." The unexpected outcome of the surgery was severe anterograde, and partial retrograde amnesia; Molaison was unable to form new episodic memories after his surgery and could not remember any events that occurred just before his surgery, but he did retain memories of events that occurred many years earlier extending back into his childhood. This case attracted such widespread professional interest that Molaison became the most intensively studied subject in medical history.
The third important theory of hippocampal function relates the hippocampus to space, and spatial memory, with the idea of a cognitive map first proposed by American psychologist E.C. Tolman. This theory was followed further by O'Keefe, and in 1971, he and his student Dostrovsky discovered neurons, in the rat hippocampus that seemed to show activity related to the rat's location within its environment. The neurons were described as place cells. A book was later produced in 1978, The Hippocampus as a Cognitive Map written by O'Keefe and Nadel. It has been generally agreed that the hippocampus plays a key role in spatial coding but the details are widely debated.
Research has focused on trying to bridge the disconnect between the two main views of hippocampal function as being split between memory and spatial cognition. In some studies, these areas have been expanded to the point of near convergence. In an attempt to reconcile the two disparate views, it is suggested that a broader view of the hippocampal function is taken and seen to have a role that encompasses both the organisation of experience (mental mapping, as per Tolman's original concept in 1948) and the directional behaviour seen as being involved in all areas of cognition, so that the function of the hippocampus can be viewed as a broader system that incorporates both the memory and the spatial perspectives in its role that involves the use of a wide scope of cognitive maps. This relates to the purposive behaviorism born of Tolman's original goal of identifying the complex cognitive mechanisms and purposes that guided behaviour.
It has also been proposed that the spiking activity of hippocampal neurons is associated spatially, and it was suggested that the mechanisms of memory and planning both evolved from mechanisms of navigation and that their neuronal algorithms were basically the same.
Damage to the hippocampus does not affect some types of memory, such as the ability to learn new skills (playing a musical instrument or solving certain types of puzzles, for example). This fact suggests that such abilities depend on different types of memory such as procedural memory in implicit memory function, implicating different brain regions. Furthermore, amnesic patients frequently show implicit memory for experiences even in the absence of conscious knowledge. For example, patients asked to guess which of two faces they have seen most recently may give the correct answer most of the time in spite of stating that they have never seen either of the faces before. Some researchers distinguish between conscious recollection, which depends on the hippocampus, and familiarity, which depends on portions of the medial temporal lobe. A study claims to have confirmed that the hippocampus is not associated with implicit memory. But other sources say the question is still up for debate (as of 2024).
When rats are exposed to an intense learning event, they may retain a life-long memory of the event even after a single training session. The memory of such an event appears to be first stored in the hippocampus, but this storage is transient. Much of the long-term storage of the memory seems to take place in the anterior cingulate cortex. When such an intense learning event was experimentally applied, more than 5,000 differently methylated DNA regions appeared in the hippocampus neuronal genome of the rats at one hour and at 24 hours after training. These alterations in methylation pattern occurred at many genes that were down-regulated, often due to the formation of new 5-methylcytosine sites in CpG rich regions of the genome. Furthermore, many other genes were upregulated, likely often due to the removal of methyl groups from previously existing 5-methylcytosines (5mCs) in DNA. Demethylation of 5mC can be carried out by several proteins acting in concert, including TET enzymes as well as enzymes of the DNA base excision repair pathway.
The between-systems memory interference model describes the inhibition of non-hippocampal systems of memory during concurrent hippocampal activity. Specifically it was found that when the hippocampus was inactive, non-hippocampal systems located elsewhere in the brain were found to consolidate memory in its place. However, when the hippocampus was reactivated, memory traces consolidated by non-hippocampal systems were not recalled, suggesting that the hippocampus interferes with long-term memory consolidation in other memory-related systems.
One of the major implications that this model illustrates is the dominant effects of the hippocampus on non-hippocampal networks when information is incongruent. With this information in mind, future directions could lead towards the study of these non-hippocampal memory systems through hippocampal inactivation, further expanding the labile constructs of memory. Additionally, many theories of memory are holistically based around the hippocampus. This model could add beneficial information to hippocampal research and memory theories such as the multiple trace theory. Lastly, the between-system memory interference model allows researchers to evaluate their results on a multiple-systems model, suggesting that some effects may not be simply mediated by one portion of the brain.
The first of these types of cell discovered in the 1970s were the place cells, which led to the idea of the hippocampus acting to give a neural representation of the environment in a cognitive map. When the hippocampus is dysfunctional, orientation is affected; people may have difficulty in remembering how they arrived at a location and how to proceed further. Getting lost is a common symptom of amnesia. Studies with animals have shown that an intact hippocampus is required for initial learning and long-term retention of some spatial memory tasks, in particular ones that require finding the way to a hidden goal.
Cells with location-specific firing patterns have been reported during a study of people with drug-resistant epilepsy. They were undergoing an invasive procedure to localize the source of their seizures, with a view to surgical resection. They had diagnostic electrodes implanted in their hippocampi and then used a computer to move around in a virtual reality town. Similar brain imaging studies in navigation have shown the hippocampus to be active. A study was carried out on taxi drivers. London's black cab drivers need to learn the locations of a large number of places and the fastest routes between them in order to pass a strict test known as The Knowledge in order to gain a license to operate. A study showed that the posterior part of the hippocampus is larger in these drivers than in the general public, and that a positive correlation exists between the length of time served as a driver and the increase in the volume of this part. It was also found the total volume of the hippocampus was unchanged, as the increase seen in the posterior part was made at the expense of the anterior part, which showed a relative decrease in size. There have been no reported adverse effects from this disparity in hippocampal proportions. Another study showed opposite findings in blind individuals. The anterior part of the right hippocampus was larger and the posterior part was smaller, compared with sighted individuals.
A review makes reference to a number of studies that show the involvement of the hippocampus in conflict tasks. The authors suggest that one challenge is to understand how conflict processing relates to the functions of spatial navigation and memory and how all of these functions need not be mutually exclusive.
The hippocampus shows two major modes of activity, each associated with a distinct pattern of neural population activity and waves of electrical activity as measured by an electroencephalogram (EEG). These modes are named after the EEG patterns associated with them: theta and large irregular activity (LIA). The main characteristics described below are for the rat, which is the animal most extensively studied.
The theta mode appears during states of active, alert behavior (especially locomotion), and also during REM sleep (dreaming). In the theta mode, the EEG is dominated by large regular waves with a frequency range of 6 to 9 Hz, and the main groups of hippocampal neurons (pyramidal cells and granule cells) show sparse population activity, which means that in any short time interval, the great majority of cells are silent, while the small remaining fraction fire at relatively high rates, up to 50 spikes in one second for the most active of them. An active cell typically stays active for half a second to a few seconds. As the rat behaves, the active cells fall silent and new cells become active, but the overall percentage of active cells remains more or less constant. In many situations, cell activity is determined largely by the spatial location of the animal, but other behavioral variables also clearly influence it.
These two hippocampal activity modes can be seen in primates as well as rats, with the exception that it has been difficult to see robust theta rhythmicity in the primate hippocampus. There are, however, qualitatively similar sharp waves and similar state-dependent changes in neural population activity.
Theta rhythmicity previously clearly shown in rabbits and rodents has also been shown in humans. In rats (the animals that have been the most extensively studied), theta is seen mainly in two conditions: first, when an animal is walking or in some other way actively interacting with its surroundings; second, during REM sleep. The function of theta has not yet been convincingly explained although numerous theories have been proposed. The most popular hypothesis has been to relate it to learning and memory. An example would be the phase with which theta rhythms, at the time of stimulation of a neuron, shape the effect of that stimulation upon its synapses. What is meant here is that theta rhythms may affect those aspects of learning and memory that are dependent upon synaptic plasticity. It is well established that lesions of the medial septum – the central node of the theta system – cause severe disruptions of memory. However, the medial septum is more than just the controller of theta; it is also the main source of cholinergic projections to the hippocampus. It has not been established that septal lesions exert their effects specifically by eliminating the theta rhythm.
During sleep or during resting, when an animal is not engaged with its surroundings, the hippocampal EEG shows a pattern of irregular slow waves, somewhat larger in amplitude than theta waves. This pattern is occasionally interrupted by large surges called sharp waves. These events are associated with bursts of spike activity lasting 50 to 100 milliseconds in pyramidal cells of CA3 and CA1. They are also associated with short-lived high-frequency EEG oscillations called "ripples", with frequencies in the range 150 to 200 Hz in rats, and together they are known as sharp waves and ripples. Sharp waves are most frequent during sleep when they occur at an average rate of around 1 per second (in rats) but in a very irregular temporal pattern. Sharp waves are less frequent during inactive waking states and are usually smaller. Sharp waves have also been observed in humans and monkeys. In macaques, sharp waves are robust but do not occur as frequently as in rats.
Sharp waves appear to be associated with memory. Numerous later studies, have reported that when hippocampal place cells have overlapping spatial firing fields (and therefore often fire in near-simultaneity), they tend to show correlated activity during sleep following the behavioral session. This enhancement of correlation, commonly known as reactivation, has been found to occur mainly during sharp waves. It has been proposed that sharp waves are, in fact, reactivations of neural activity patterns that were memorized during behavior, driven by strengthening of synaptic connections within the hippocampus. This idea forms a key component of the "two-stage memory" theory, advocated by Buzsáki and others, which proposes that memories are stored within the hippocampus during behavior and then later transferred to the neocortex during sleep. Sharp waves in Hebbian theory are seen as persistently repeated stimulations by presynaptic cells, of postsynaptic cells that are suggested to drive synaptic changes in the cortical targets of hippocampal output pathways. Suppression of sharp waves and ripples in sleep or during immobility can interfere with memories expressed at the level of the behavior, nonetheless, the newly formed CA1 place cell code can re-emerge even after a sleep with abolished sharp waves and ripples, in spatially non-demanding tasks.
The hippocampus is a particularly favorable site for studying LTP because of its densely packed and sharply defined layers of neurons, but similar types of activity-dependent synaptic change have also been observed in many other brain areas. The best-studied form of LTP has been seen in CA1 of the hippocampus and occurs at synapses that terminate on dendritic spines and use the neurotransmitter glutamate. The synaptic changes depend on a special type of glutamate receptor, the N-methyl-D-aspartate (NMDA) receptor, a cell surface receptor which has the special property of allowing calcium to enter the postsynaptic spine only when presynaptic activation and postsynaptic depolarization occur at the same time. Drugs that interfere with NMDA receptors block LTP and have major effects on some types of memory, especially spatial memory. Genetically modified mice that are modified to disable the LTP mechanism, also generally show severe memory deficits.
Normal aging is associated with a gradual decline in some types of memory, including episodic memory and working memory (or short-term memory). Because the hippocampus is thought to play a central role in memory, there has been considerable interest in the possibility that age-related declines could be caused by hippocampal deterioration. Some early studies reported substantial loss of neurons in the hippocampus of elderly people, but later studies using more precise techniques found only minimal differences. Similarly, some MRI studies have reported shrinkage of the hippocampus in elderly people, but other studies have failed to reproduce this finding. There is, however, a reliable relationship between the size of the hippocampus and memory performance; so that where there is age-related shrinkage, memory performance will be impaired. There are also reports that memory tasks tend to produce less hippocampal activation in the elderly than in the young. Furthermore, a randomized control trial published in 2011 found that aerobic exercise could increase the size of the hippocampus in adults aged 55 to 80 and also improve spatial memory.
Sex-specific responses to stress have also been demonstrated in the rat to have an effect on the hippocampus. Chronic stress in the male rat showed dendritic retraction and cell loss in the CA3 region but this was not shown in the female. This was thought to be due to neuroprotective ovarian hormones. In rats, DNA damage increases in the hippocampus under conditions of stress.
The hippocampus is one of the few brain regions where new neurons are generated. This process of neurogenesis is confined to the dentate gyrus. Neurogenesis can be positively affected by exercise or negatively affected by epileptic seizures.
The hippocampus has been seen as central to the pathology of schizophrenia, both in the neural and physiological effects. It has been generally accepted that there is an abnormal synaptic connectivity underlying schizophrenia. Several lines of evidence implicate changes in the synaptic organization and connectivity, in and from the hippocampus Many studies have found dysfunction in the synaptic circuitry within the hippocampus and its activity on the prefrontal cortex. The glutamatergic pathways have been seen to be largely affected. The subfield CA1 is seen to be the least involved of the other subfields, and CA4 and the subiculum have been reported elsewhere as being the most implicated areas. The review concluded that the pathology could be due to genetics, faulty neurodevelopment or abnormal neural plasticity. It was further concluded that schizophrenia is not due to any known neurodegenerative disorder. Oxidative DNA damage is substantially increased in the hippocampus of elderly patients with chronic schizophrenia.
In birds, the correspondence is sufficiently well established that most anatomists refer to the medial pallial zone as the "avian hippocampus". Numerous species of birds have strong spatial skills, in particular those that cache (store) food. There is evidence that food-caching birds have a larger hippocampus than other types of birds and that damage to the hippocampus causes impairments in spatial memory.
Tatu L, Bogousslavsky J (December 2022). "Beasts and Gods: Hippocampal quarrels before memory". Rev Neurol (Paris). 178 (10): 991–995. doi:10.1016/j.neurol.2022.03.022. PMID 35927101. /wiki/Doi_(identifier)
Duvernoy HM (2005). "Introduction". The Human Hippocampus (3rd ed.). Berlin: Springer-Verlag. p. 1. ISBN 978-3-540-23191-2. Archived from the original on 2016-08-28. Retrieved 2016-03-05. 978-3-540-23191-2
Iniesta I (October 2014). "On the origin of Ammon's horn". Neurología (English Edition). 29 (8): 490–496. doi:10.1016/j.nrleng.2012.03.024. /wiki/Doi_(identifier)
Pearce JM (September 2001). "Ammon's horn and the hippocampus". Historical Note. Journal of Neurology, Neurosurgery, and Psychiatry. 71 (3): 351. doi:10.1136/jnnp.71.3.351. PMC 1737533. PMID 11511709. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1737533
"BrainInfo". braininfo.rprc.washington.edu. http://braininfo.rprc.washington.edu/centraldirectory.aspx?ID=2283
Anand KS, Dhikav V (October 2012). "Hippocampus in health and disease: An overview". Ann Indian Acad Neurol. 15 (4): 239–46. doi:10.4103/0972-2327.104323. PMC 3548359. PMID 23349586. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548359
Duvernoy HM (2005). "Introduction". The Human Hippocampus (3rd ed.). Berlin: Springer-Verlag. p. 1. ISBN 978-3-540-23191-2. Archived from the original on 2016-08-28. Retrieved 2016-03-05. 978-3-540-23191-2
Owen CM, Howard A, Binder DK (December 2009). "Hippocampus minor, calcar avis, and the Huxley-Owen debate". Neurosurgery. 65 (6): 1098–1104, discussion 1104–1105. doi:10.1227/01.neu.0000359535.84445.0b. PMID 19934969. S2CID 19663125. /wiki/Doi_(identifier)
Tatu L, Bogousslavsky J (December 2022). "Beasts and Gods: Hippocampal quarrels before memory". Rev Neurol (Paris). 178 (10): 991–995. doi:10.1016/j.neurol.2022.03.022. PMID 35927101. /wiki/Doi_(identifier)
Gross CG (October 1993). "Hippocampus minor and man's place in nature: a case study in the social construction of neuroanatomy". Hippocampus. 3 (4): 403–415. doi:10.1002/hipo.450030403. PMID 8269033. S2CID 15172043. /wiki/Doi_(identifier)
Pang CC, Kiecker C, O'Brien JT, Noble W, Chang RC (April 2019). "Ammon's Horn 2 (CA2) of the Hippocampus: A Long-Known Region with a New Potential Role in Neurodegeneration". The Neuroscientist. 25 (2): 167–180. doi:10.1177/1073858418778747. PMID 29865938. S2CID 46929253. https://kclpure.kcl.ac.uk/portal/en/publications/0547351a-ef50-44ac-b15d-e192706f446b
"Search Results for ammon's horn". Oxford Reference. Retrieved 9 December 2021. https://www.oxfordreference.com/search?q=ammon%27s+horn&searchBtn=Search&isQuickSearch=true
Colman AM (21 May 2015). "dentate gyrus". A Dictionary of Psychology. Oxford University Press. doi:10.1093/acref/9780199657681.001.0001. ISBN 978-0-19-965768-1. Retrieved 10 December 2021. 978-0-19-965768-1
Purves D (2012). Neuroscience (5th ed.). Sunderland, MA: Sinauer. p. 652. ISBN 978-0-87893-695-3. 978-0-87893-695-3
Roxo MR, Franceschini PR, Zubaran C, Kleber FD, Sander JW (2011). "The limbic system conception and its historical evolution". TheScientificWorldJournal. 11: 2428–2441. doi:10.1100/2011/157150. PMC 3236374. PMID 22194673. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236374
Purves D (2012). Neuroscience (5th ed.). Sunderland, MA: Sinauer. p. 652. ISBN 978-0-87893-695-3. 978-0-87893-695-3
Roxo MR, Franceschini PR, Zubaran C, Kleber FD, Sander JW (2011). "The limbic system conception and its historical evolution". TheScientificWorldJournal. 11: 2428–2441. doi:10.1100/2011/157150. PMC 3236374. PMID 22194673. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236374
Roxo MR, Franceschini PR, Zubaran C, Kleber FD, Sander JW (2011). "The limbic system conception and its historical evolution". TheScientificWorldJournal. 11: 2428–2441. doi:10.1100/2011/157150. PMC 3236374. PMID 22194673. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236374
Fogwe LA, Reddy V, Mesfin FB (2025). "Neuroanatomy, Hippocampus". StatPearls. StatPearls Publishing. PMID 29489273. https://www.ncbi.nlm.nih.gov/books/NBK482171/#:~:text=The%20hippocampus%20has%20three%20distinct,and%20entorhinal%20and%20other%20cortices.
Purves D (2011). Neuroscience (5th ed.). Sunderland, MA: Sinauer. pp. 730–735. ISBN 978-0-87893-695-3. 978-0-87893-695-3
Morris R, Amaral D (2024). The Hippocampus Book (2nd ed.). Oxford: Oxford University Press, Incorporated. pp. 49–50. ISBN 9780190065324. 9780190065324
Creutzfeldt O (27 April 1995). "The allocortex and limbic system". Cortex Cerebri: Performance, Structural and Functional Organisation of the Cortex: 486–540. doi:10.1093/acprof:oso/9780198523246.003.0009. ISBN 978-0-19-852324-6. 978-0-19-852324-6
Anderson P, Morris R, Amaral, Bliss T, O'Keefe J (2007). "The hippocampal formation". In Anderson P, Morris R, Amaral, Bliss T, O'Keefe J (eds.). The hippocampus book (first ed.). New York: Oxford University Press. pp. 3–77. ISBN 978-0195100273. Archived from the original on 2020-03-15. Retrieved 2016-12-15. 978-0195100273
Bachevalier J (December 2019). "Nonhuman primate models of hippocampal development and dysfunction". Proceedings of the National Academy of Sciences of the United States of America. 116 (52): 26210–26216. Bibcode:2019PNAS..11626210B. doi:10.1073/pnas.1902278116. PMC 6936345. PMID 31871159. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936345
Sun F, Shuai Y, Wang J, Yan J, Lin B, Li X, et al. (February 2025). "Hippocampal gray matter volume alterations in patients with first-episode and recurrent major depressive disorder and their associations with gene profiles". BMC Psychiatry. 25 (1): 134. doi:10.1186/s12888-025-06562-4. PMC 11829352. PMID 39955494. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829352
Fogwe LA, Reddy V, Mesfin FB (2025). "Neuroanatomy, Hippocampus". StatPearls. StatPearls Publishing. PMID 29489273. https://www.ncbi.nlm.nih.gov/books/NBK482171/#:~:text=The%20hippocampus%20has%20three%20distinct,and%20entorhinal%20and%20other%20cortices.
Sun F, Shuai Y, Wang J, Yan J, Lin B, Li X, et al. (February 2025). "Hippocampal gray matter volume alterations in patients with first-episode and recurrent major depressive disorder and their associations with gene profiles". BMC Psychiatry. 25 (1): 134. doi:10.1186/s12888-025-06562-4. PMC 11829352. PMID 39955494. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829352
Morris R, Amaral D (2024). The Hippocampus Book (2nd ed.). Oxford: Oxford University Press, Incorporated. pp. 49–50. ISBN 9780190065324. 9780190065324
Morris R, Amaral D (2024). The Hippocampus Book (2nd ed.). Oxford: Oxford University Press, Incorporated. pp. 49–50. ISBN 9780190065324. 9780190065324
Morris R, Amaral D (2024). The Hippocampus Book (2nd ed.). Oxford: Oxford University Press, Incorporated. pp. 49–50. ISBN 9780190065324. 9780190065324
Singh V (2017). Textbook. of Anatomy Vol III. Elsevier. p. 402. ISBN 9788131237274. 9788131237274
Chauhan P, Jethwa K, Rathawa A, Chauhan G, Mehra S (2021). "The Anatomy of the Hippocampus". Cerebral Ischemia. Exon Publications. Retrieved 19 March 2025. https://www.ncbi.nlm.nih.gov/books/NBK575732/
Anderson P, Morris R, Amaral, Bliss T, O'Keefe J (2007). "The hippocampal formation". In Anderson P, Morris R, Amaral, Bliss T, O'Keefe J (eds.). The hippocampus book (first ed.). New York: Oxford University Press. pp. 3–77. ISBN 978-0195100273. Archived from the original on 2020-03-15. Retrieved 2016-12-15. 978-0195100273
West MJ (1990). "Chapter 2 Stereological studies of the hippocampus: A comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men". Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men. Progress in Brain Research. Vol. 83. pp. 13–36. doi:10.1016/S0079-6123(08)61238-8. ISBN 978-0-444-81149-3. PMID 2203095. 978-0-444-81149-3
* Suzuki M, Hagino H, Nohara S, Zhou SY, Kawasaki Y, Takahashi T, et al. (February 2005). "Male-specific volume expansion of the human hippocampus during adolescence". Cerebral Cortex. 15 (2): 187–193. doi:10.1093/cercor/bhh121. PMID 15238436. https://doi.org/10.1093%2Fcercor%2Fbhh121
Jacobs LF (2003). "The evolution of the cognitive map". Brain, Behavior and Evolution. 62 (2): 128–139. doi:10.1159/000072443. PMID 12937351. S2CID 16102408. /wiki/Doi_(identifier)
Morris R, Amaral D (2024). The Hippocampus Book (2nd ed.). Oxford: Oxford University Press, Incorporated. pp. 49–50. ISBN 9780190065324. 9780190065324
Chen HJ, Qiu J, Qi Y, Fu L, Fu Q, Wu W, et al. (March 2023). "Hippocampal subfield morphology in regular hemodialysis patients". Nephrol Dial Transplant. 38 (4): 992–1001. doi:10.1093/ndt/gfac263. PMC 10064839. PMID 36124763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10064839
Dalton MA, D'Souza A, Lv J, Calamante F (November 2022). "New insights into anatomical connectivity along the anterior-posterior axis of the human hippocampus using in vivo quantitative fibre tracking". eLife. 11. doi:10.7554/eLife.76143. PMC 9643002. PMID 36345716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643002
Moser MB, Moser EI (1998). "Functional differentiation in the hippocampus". Hippocampus. 8 (6): 608–619. doi:10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7. PMID 9882018. S2CID 32384692. /wiki/Doi_(identifier)
Anderson P, Morris R, Amaral, Bliss T, O'Keefe J (2007). "The hippocampal formation". In Anderson P, Morris R, Amaral, Bliss T, O'Keefe J (eds.). The hippocampus book (first ed.). New York: Oxford University Press. pp. 3–77. ISBN 978-0195100273. Archived from the original on 2020-03-15. Retrieved 2016-12-15. 978-0195100273
Amaral DG, Scharfman HE, Lavenex P (2007). "The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies)". Prog Brain Res. Progress in Brain Research. 163: 3–22. doi:10.1016/S0079-6123(07)63001-5. ISBN 978-0-444-53015-8. PMC 2492885. PMID 17765709. 978-0-444-53015-8
Duvernoy H, Cattin F, Risold PY (June 2005). "Vascularization". In Duvernoy HM, Cattin F, Risold PY (eds.). The human hippocampus: functional anatomy, vascularization and serial sections with MRI. Berlin: Springer. pp. 69–105. doi:10.1007/978-3-642-33603-4_5. ISBN 978-3-642-33603-4. 978-3-642-33603-4
Jinde S, Zsiros V, Nakazawa K (2013). "Hilar mossy cell circuitry controlling dentate granule cell excitability". Front Neural Circuits. 7: 14. doi:10.3389/fncir.2013.00014. PMC 3569840. PMID 23407806. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569840
Murakami G, Tsurugizawa T, Hatanaka Y, Komatsuzaki Y, Tanabe N, Mukai H, et al. (December 2006). "Comparison between basal and apical dendritic spines in estrogen-induced rapid spinogenesis of CA1 principal neurons in the adult hippocampus". Biochemical and Biophysical Research Communications. 351 (2): 553–558. doi:10.1016/j.bbrc.2006.10.066. PMID 17070772. CA1 neurons consist of four regions, i.e., the stratum oriens, the cell body, the stratum radiatum, and the stratum lacunosum-moleculare /wiki/Doi_(identifier)
Witter M (October 2011). "Entorhinal cortex". Scholarpedia. 6 (10): 4380. Bibcode:2011SchpJ...6.4380W. doi:10.4249/scholarpedia.4380. https://doi.org/10.4249%2Fscholarpedia.4380
Takeuchi Y, Nagy AJ, Barcsai L, Li Q, Ohsawa M, Mizuseki K, et al. (2021). "The Medial Septum as a Potential Target for Treating Brain Disorders Associated With Oscillopathies". Frontiers in Neural Circuits. 15: 701080. doi:10.3389/fncir.2021.701080. PMC 8297467. PMID 34305537. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297467
Witter M (October 2011). "Entorhinal cortex". Scholarpedia. 6 (10): 4380. Bibcode:2011SchpJ...6.4380W. doi:10.4249/scholarpedia.4380. https://doi.org/10.4249%2Fscholarpedia.4380
Eichenbaum H, Yonelinas AP, Ranganath C (2007). "The medial temporal lobe and recognition memory". Annual Review of Neuroscience. 30: 123–152. doi:10.1146/annurev.neuro.30.051606.094328. PMC 2064941. PMID 17417939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064941
Eichenbaum H, Yonelinas AP, Ranganath C (2007). "The medial temporal lobe and recognition memory". Annual Review of Neuroscience. 30: 123–152. doi:10.1146/annurev.neuro.30.051606.094328. PMC 2064941. PMID 17417939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064941
Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2012). Principles of Neural Science (5th ed.). New York: McGraw-Hill Medical. pp. 1490–1491. ISBN 978-0-07-139011-8. OCLC 820110349. 978-0-07-139011-8
Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2012). Principles of Neural Science (5th ed.). New York: McGraw-Hill Medical. pp. 1490–1491. ISBN 978-0-07-139011-8. OCLC 820110349. 978-0-07-139011-8
Purves D (2011). Neuroscience (5th ed.). Sunderland, Mass.: Sinauer. p. 171. ISBN 978-0-87893-695-3. 978-0-87893-695-3
Byrne JH. "Section 1, Intro Chapter". Introduction to Neurons and Neuronal Networks. Neuroscience Online: An Electronic Textbook for the Neurosciences. Department of Neurobiology and Anatomy – The University of Texas Medical School at Houston. Archived from the original on 2013-12-03. https://web.archive.org/web/20131203010009/http://neuroscience.uth.tmc.edu/s1/introduction.html
Anderson P, Morris R, Amaral, Bliss T, O'Keefe J (2007). "The hippocampal formation". In Anderson P, Morris R, Amaral, Bliss T, O'Keefe J (eds.). The hippocampus book (first ed.). New York: Oxford University Press. pp. 3–77. ISBN 978-0195100273. Archived from the original on 2020-03-15. Retrieved 2016-12-15. 978-0195100273
Purves D (2011). Neuroscience (5th ed.). Sunderland, MA: Sinauer. pp. 730–735. ISBN 978-0-87893-695-3. 978-0-87893-695-3
Winson J (July 1978). "Loss of hippocampal theta rhythm results in spatial memory deficit in the rat". Science. 201 (4351): 160–163. Bibcode:1978Sci...201..160W. doi:10.1126/science.663646. PMID 663646. /wiki/Bibcode_(identifier)
Xiao Y, Hu Y, Huang K (2023). "Atrophy of hippocampal subfields relates to memory decline during the pathological progression of Alzheimer's disease". Front Aging Neurosci. 15: 1287122. doi:10.3389/fnagi.2023.1287122. PMC 10749921. PMID 38149170. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10749921
Canada KL, Botdorf M, Riggins T (October 2020). "Longitudinal development of hippocampal subregions from early- to mid-childhood". Hippocampus. 30 (10): 1098–1111. doi:10.1002/hipo.23218. PMC 8500647. PMID 32497411. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500647
Ezama L, Hernández-Cabrera JA, Seoane S, Pereda E, Janssen N (May 2021). "Functional connectivity of the hippocampus and its subfields in resting-state networks". Eur J Neurosci. 53 (10): 3378–3393. doi:10.1111/ejn.15213. PMC 8252772. PMID 33786931. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252772
Xiao Y, Hu Y, Huang K (2023). "Atrophy of hippocampal subfields relates to memory decline during the pathological progression of Alzheimer's disease". Front Aging Neurosci. 15: 1287122. doi:10.3389/fnagi.2023.1287122. PMC 10749921. PMID 38149170. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10749921
Fanselow MS, Dong HW (January 2010). "Are the dorsal and ventral hippocampus functionally distinct structures?". Neuron. 65 (1): 7–19. doi:10.1016/j.neuron.2009.11.031. PMC 2822727. PMID 20152109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822727
Dalton MA, D'Souza A, Lv J, Calamante F (November 2022). "New insights into anatomical connectivity along the anterior-posterior axis of the human hippocampus using in vivo quantitative fibre tracking". eLife. 11. doi:10.7554/eLife.76143. PMC 9643002. PMID 36345716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643002
Pothuizen HH, Zhang WN, Jongen-Rêlo AL, Feldon J, Yee BK (February 2004). "Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory". The European Journal of Neuroscience. 19 (3): 705–712. doi:10.1111/j.0953-816X.2004.03170.x. PMID 14984421. S2CID 33385275. /wiki/Doi_(identifier)
Jung MW, Wiener SI, McNaughton BL (December 1994). "Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat". The Journal of Neuroscience. 14 (12): 7347–7356. doi:10.1523/JNEUROSCI.14-12-07347.1994. PMC 6576902. PMID 7996180. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6576902
Morris R, Amaral D (2024). The Hippocampus Book (2nd ed.). Oxford: Oxford University Press, Incorporated. pp. 8–9. ISBN 9780190065324. 9780190065324
Morris R, Amaral D (2024). The Hippocampus Book (2nd ed.). Oxford: Oxford University Press, Incorporated. pp. 8–9. ISBN 9780190065324. 9780190065324
Morris R, Amaral D (2024). The Hippocampus Book (2nd ed.). Oxford: Oxford University Press, Incorporated. pp. 8–9. ISBN 9780190065324. 9780190065324
van Groen T, Wyss JM (December 1990). "Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections". The Journal of Comparative Neurology. 302 (3): 515–528. doi:10.1002/cne.903020308. PMID 1702115. S2CID 7175722. /wiki/Doi_(identifier)
Morris R, Amaral D (2024). The Hippocampus Book (2nd ed.). Oxford: Oxford University Press, Incorporated. pp. 8–9. ISBN 9780190065324. 9780190065324
Eichenbaum H, Otto TA, Wible CG, Piper JM (1991). "Ch 7. Building a model of the hippocampus in olfaction and memory". In Davis JL, Eichenbaum H (eds.). Olfaction. MIT Press. ISBN 978-0-262-04124-9. 978-0-262-04124-9
Eichenbaum H, Cohen NJ (1993). Memory, Amnesia, and the Hippocampal System. MIT Press.
Fanselow MS, Dong HW (January 2010). "Are the dorsal and ventral hippocampus functionally distinct structures?". Neuron. 65 (1): 7–19. doi:10.1016/j.neuron.2009.11.031. PMC 2822727. PMID 20152109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822727
Anagnostaras SG, Gale GD, Fanselow MS (2002). "The hippocampus and Pavlovian fear conditioning: reply to Bast et al" (PDF). Hippocampus. 12 (4): 561–565. doi:10.1002/hipo.10071. PMID 12201641. S2CID 733197. Archived from the original (PDF) on 2005-02-16. https://web.archive.org/web/20050216104718/http://homepage.mac.com/sanagnos/19bastreply2002.pdf
Cenquizca LA, Swanson LW (November 2007). "Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex". Brain Research Reviews. 56 (1): 1–26. doi:10.1016/j.brainresrev.2007.05.002. PMC 2171036. PMID 17559940. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171036
Nadel L, O'Keefe J, Black A (June 1975). "Slam on the brakes: a critique of Altman, Brunner, and Bayer's response-inhibition model of hippocampal function". Behavioral Biology. 14 (2): 151–162. doi:10.1016/S0091-6773(75)90148-0. PMID 1137539. /wiki/Doi_(identifier)
Gray JA, McNaughton N (2000). The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal System. Oxford University Press.
Bosecke C, Ng M, Dastgheib Z, Lithgow BJ (January 2025). "Perspective: Hippocampal theta rhythm as a potential vestibuloacoustic biomarker of anxiety". Eur J Neurosci. 61 (1): e16641. doi:10.1111/ejn.16641. PMC 11664906. PMID 39662900. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664906
Scoville WB, Milner B (February 1957). "Loss of recent memory after bilateral hippocampal lesions". Journal of Neurology, Neurosurgery, and Psychiatry. 20 (1): 11–21. doi:10.1136/jnnp.20.1.11. PMC 497229. PMID 13406589. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC497229
Squire LR (January 2009). "The legacy of patient H.M. for neuroscience". Neuron. 61 (1): 6–9. doi:10.1016/j.neuron.2008.12.023. PMC 2649674. PMID 19146808. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649674
Carey B (2008-12-04). "H. M., an Unforgettable Amnesiac, Dies at 82". The New York Times. Archived from the original on 2018-06-13. Retrieved 2009-04-27. https://www.nytimes.com/2008/12/05/us/05hm.html
Squire LR (January 2009). "The legacy of patient H.M. for neuroscience". Neuron. 61 (1): 6–9. doi:10.1016/j.neuron.2008.12.023. PMC 2649674. PMID 19146808. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649674
O'Keefe J, Dostrovsky J (November 1971). "The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat". Brain Research. 34 (1): 171–175. doi:10.1016/0006-8993(71)90358-1. PMID 5124915. /wiki/Doi_(identifier)
O'Keefe J, Nadel L (1978). The Hippocampus as a Cognitive Map. Oxford University Press. Archived from the original on 2011-03-24. Retrieved 2008-10-23. http://www.cognitivemap.net/HCMpdf/HCMChapters.html
Moser EI, Kropff E, Moser MB (2008). "Place cells, grid cells, and the brain's spatial representation system". Annual Review of Neuroscience. 31: 69–89. doi:10.1146/annurev.neuro.31.061307.090723. PMID 18284371. S2CID 16036900. /wiki/Doi_(identifier)
Schiller D, Eichenbaum H, Buffalo EA, Davachi L, Foster DJ, Leutgeb S, et al. (October 2015). "Memory and Space: Towards an Understanding of the Cognitive Map". The Journal of Neuroscience. 35 (41): 13904–13911. doi:10.1523/JNEUROSCI.2618-15.2015. PMC 6608181. PMID 26468191. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608181
Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, et al. (2007-04-06). "Schemas and Memory Consolidation". Science. 316 (5821): 76–82. doi:10.1126/science.1135935. https://www.science.org/doi/10.1126/science.1135935
Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, et al. (2011-08-12). "Schema-dependent gene activation and memory encoding in neocortex". Science. 333 (6044): 891–895. doi:10.1126/science.1205274. ISSN 1095-9203. PMID 21737703. https://pubmed.ncbi.nlm.nih.gov/21737703/
Miller AM, Jacob AD, Ramsaran AI, De Snoo ML, Josselyn SA, Frankland PW (2023-06-21). "Emergence of a predictive model in the hippocampus". Neuron. 111 (12): 1952–1965.e5. doi:10.1016/j.neuron.2023.03.011. ISSN 0896-6273. PMC 10293047. https://www.sciencedirect.com/science/article/pii/S0896627323002076
Eichenbaum H (December 2001). "The hippocampus and declarative memory: Cognitive mechanisms and neural codes". Behavioural Brain Research. 127 (1–2): 199–207. doi:10.1016/s0166-4328(01)00365-5. PMID 11718892. S2CID 20843130. /wiki/Doi_(identifier)
Buzsáki G, Moser EI (February 2013). "Memory, navigation and theta rhythm in the hippocampal-entorhinal system". Nature Neuroscience. 16 (2): 130–138. doi:10.1038/nn.3304. PMC 4079500. PMID 23354386. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079500
Ito R, Lee AC (October 2016). "The role of the hippocampus in approach-avoidance conflict decision-making: Evidence from rodent and human studies". Behavioural Brain Research. 313: 345–357. doi:10.1016/j.bbr.2016.07.039. PMID 27457133. https://doi.org/10.1016%2Fj.bbr.2016.07.039
Huang CC, Rolls ET, Hsu CH, Feng J, Lin CP (August 2021). "Extensive Cortical Connectivity of the Human Hippocampal Memory System: Beyond the "What" and "Where" Dual Stream Model". Cereb Cortex. 31 (10): 4652–4669. doi:10.1093/cercor/bhab113. PMC 8866812. PMID 34013342. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866812
Gluck M, Mercado E, Myers C (2014). Learning and Memory From Brain to Behavior (Second ed.). New York: Kevin Feyen. p. 416. ISBN 978-1-4292-4014-7. 978-1-4292-4014-7
Di Gennaro G, Grammaldo LG, Quarato PP, Esposito V, Mascia A, Sparano A, et al. (June 2006). "Severe amnesia following bilateral medial temporal lobe damage occurring on two distinct occasions". Neurological Sciences. 27 (2): 129–133. doi:10.1007/s10072-006-0614-y. PMID 16816912. S2CID 7741607. /wiki/Doi_(identifier)
Squire LR, Schacter DL (2002). The Neuropsychology of Memory. Guilford Press.
Virley D, Ridley RM, Sinden JD, Kershaw TR, Harland S, Rashid T, et al. (December 1999). "Primary CA1 and conditionally immortal MHP36 cell grafts restore conditional discrimination learning and recall in marmosets after excitotoxic lesions of the hippocampal CA1 field". Brain: A Journal of Neurology. 122 (12): 2321–2335. doi:10.1093/brain/122.12.2321. PMID 10581225. https://doi.org/10.1093%2Fbrain%2F122.12.2321
Sozinova EV, Kozlovskiy SA, Vartanov AV, Skvortsova VB, Pirogov YA, Anisimov NV, et al. (September 2008). "The role of hippocampal parts in verbal memory and activation processes". International Journal of Psychophysiology. 69 (3): 312. doi:10.1016/j.ijpsycho.2008.05.328. /wiki/Doi_(identifier)
Diana RA, Yonelinas AP, Ranganath C (September 2007). "Imaging recollection and familiarity in the medial temporal lobe: a three-component model". Trends in Cognitive Sciences. 11 (9): 379–386. doi:10.1016/j.tics.2007.08.001. PMID 17707683. S2CID 1443998. /wiki/Doi_(identifier)
Steinkrauss AC, Slotnick SD (April 2024). "Is implicit memory associated with the hippocampus?". Cogn Neurosci. 15 (2): 56–70. doi:10.1080/17588928.2024.2315816. PMID 38368598. /wiki/Doi_(identifier)
Slotnick SD (April 2024). "The hippocampus and implicit memory". Cogn Neurosci. 15 (2): 25–26. doi:10.1080/17588928.2024.2354706. PMID 38767113. /wiki/Doi_(identifier)
Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (May 2004). "The involvement of the anterior cingulate cortex in remote contextual fear memory". Science. 304 (5672): 881–883. Bibcode:2004Sci...304..881F. doi:10.1126/science.1094804. PMID 15131309. S2CID 15893863. /wiki/Bibcode_(identifier)
Duke CG, Kennedy AJ, Gavin CF, Day JJ, Sweatt JD (July 2017). "Experience-dependent epigenomic reorganization in the hippocampus". Learning & Memory. 24 (7): 278–288. doi:10.1101/lm.045112.117. PMC 5473107. PMID 28620075. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473107
Rasmussen KD, Helin K (April 2016). "Role of TET enzymes in DNA methylation, development, and cancer". Genes & Development. 30 (7): 733–750. doi:10.1101/gad.276568.115. PMC 4826392. PMID 27036965. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826392
Melamed P, Yosefzon Y, David C, Tsukerman A, Pnueli L (2018). "Tet Enzymes, Variants, and Differential Effects on Function". Frontiers in Cell and Developmental Biology. 6: 22. doi:10.3389/fcell.2018.00022. PMC 5844914. PMID 29556496. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844914
Drohat AC, Coey CT (October 2016). "Role of Base Excision "Repair" Enzymes in Erasing Epigenetic Marks from DNA". Chemical Reviews. 116 (20): 12711–12729. doi:10.1021/acs.chemrev.6b00191. PMC 5299066. PMID 27501078. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299066
Packard MG, Goodman J (November 2013). "Factors that influence the relative use of multiple memory systems". Hippocampus. 23 (11): 1044–1052. doi:10.1002/hipo.22178. PMID 23929809. /wiki/Doi_(identifier)
Sparks FT, Lehmann H, Sutherland RJ (September 2011). "Between-systems memory interference during retrieval". The European Journal of Neuroscience. 34 (5): 780–786. doi:10.1111/j.1460-9568.2011.07796.x. PMID 21896061. S2CID 25745773. /wiki/Doi_(identifier)
Moscovitch M, Rosenbaum RS, Gilboa A, Addis DR, Westmacott R, Grady C, et al. (July 2005). "Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory". Review. Journal of Anatomy. 207 (1): 35–66. doi:10.1111/j.1469-7580.2005.00421.x. PMC 1571502. PMID 16011544. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571502
Moscovitch M, Gilboa A (June 2024). "Systems consolidation, transformation and reorganization: Multiple trace theory, trace transformation theory and their competitors.". In Kahana MJ, Wagner AD (eds.). The Oxford Handbook of Human Memory, Two Volume Pack: Foundations and Applications. Review. Oxford University Press. doi:10.1093/oxfordhb/9780190917982.013.43. ISBN 978-0-19-091798-2. 978-0-19-091798-2
Ferbinteanu J (January 2019). "Memory systems 2018 - Towards a new paradigm". Review. Neurobiology of Learning and Memory. 157: 61–78. doi:10.1016/j.nlm.2018.11.005. PMC 6389412. PMID 30439565. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389412
Moser EI, Kropff E, Moser MB (2008). "Place cells, grid cells, and the brain's spatial representation system". Annual Review of Neuroscience. 31: 69–89. doi:10.1146/annurev.neuro.31.061307.090723. PMID 18284371. S2CID 16036900. /wiki/Doi_(identifier)
Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI (December 2008). "Representation of geometric borders in the entorhinal cortex". Science. 322 (5909): 1865–1868. Bibcode:2008Sci...322.1865S. doi:10.1126/science.1166466. PMID 19095945. S2CID 260976755. /wiki/Bibcode_(identifier)
O'Keefe J, Nadel L (1978). The Hippocampus as a Cognitive Map. Oxford University Press. Archived from the original on 2011-03-24. Retrieved 2008-10-23. http://www.cognitivemap.net/HCMpdf/HCMChapters.html
Chiu YC, Algase D, Whall A, Liang J, Liu HC, Lin KN, et al. (2004). "Getting lost: directed attention and executive functions in early Alzheimer's disease patients". Dementia and Geriatric Cognitive Disorders. 17 (3): 174–180. doi:10.1159/000076353. PMID 14739541. S2CID 20454273. /wiki/Doi_(identifier)
Morris RG, Garrud P, Rawlins JN, O'Keefe J (June 1982). "Place navigation impaired in rats with hippocampal lesions". Nature. 297 (5868): 681–683. Bibcode:1982Natur.297..681M. doi:10.1038/297681a0. PMID 7088155. S2CID 4242147. /wiki/Bibcode_(identifier)
Sutherland RJ, Kolb B, Whishaw IQ (August 1982). "Spatial mapping: definitive disruption by hippocampal or medial frontal cortical damage in the rat". Neuroscience Letters. 31 (3): 271–276. doi:10.1016/0304-3940(82)90032-5. PMID 7133562. S2CID 20203374. /wiki/Doi_(identifier)
Sutherland RJ, Weisend MP, Mumby D, Astur RS, Hanlon FM, Koerner A, et al. (2001). "Retrograde amnesia after hippocampal damage: recent vs. remote memories in two tasks". Hippocampus. 11 (1): 27–42. doi:10.1002/1098-1063(2001)11:1<27::AID-HIPO1017>3.0.CO;2-4. PMID 11261770. S2CID 142515. /wiki/Doi_(identifier)
Clark RE, Broadbent NJ, Squire LR (2005). "Hippocampus and remote spatial memory in rats". Hippocampus. 15 (2): 260–272. doi:10.1002/hipo.20056. PMC 2754168. PMID 15523608. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754168
Eichenbaum H (April 2017). "The role of the hippocampus in navigation is memory". Journal of Neurophysiology. 117 (4): 1785–1796. doi:10.1152/jn.00005.2017. PMC 5384971. PMID 28148640. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384971
Taube JS, Yoder RM (2020). "The impact of vestibular signals on cells responsible for orientation and navigation.". In Fritzsch B (ed.). The Senses; Volume 6: Vestibular System and Balance (2nd ed.). San Diego: Elsevier Science & Technology. pp. 496–511. doi:10.1016/B978-0-12-809324-5.23894-7. ISBN 978-0-12-805409-3. 978-0-12-805409-3
Moser MB (7 December 2014). "Grid cells, place cells and memory" (PDF). Nobel Lecture. Stockholm, Sweden: The Nobel Foundation. /wiki/May-Britt_Moser
Matsumura N, Nishijo H, Tamura R, Eifuku S, Endo S, Ono T (March 1999). "Spatial- and task-dependent neuronal responses during real and virtual translocation in the monkey hippocampal formation". The Journal of Neuroscience. 19 (6): 2381–2393. doi:10.1523/JNEUROSCI.19-06-02381.1999. PMC 6782547. PMID 10066288. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782547
Rolls ET, Xiang JZ (2006). "Spatial view cells in the primate hippocampus and memory recall". Reviews in the Neurosciences. 17 (1–2): 175–200. doi:10.1515/REVNEURO.2006.17.1-2.175. PMID 16703951. S2CID 147636287. /wiki/Doi_(identifier)
Moser EI, Kropff E, Moser MB (2008). "Place cells, grid cells, and the brain's spatial representation system". Annual Review of Neuroscience. 31: 69–89. doi:10.1146/annurev.neuro.31.061307.090723. PMID 18284371. S2CID 16036900. /wiki/Doi_(identifier)
Moser EI, Kropff E, Moser MB (2008). "Place cells, grid cells, and the brain's spatial representation system". Annual Review of Neuroscience. 31: 69–89. doi:10.1146/annurev.neuro.31.061307.090723. PMID 18284371. S2CID 16036900. /wiki/Doi_(identifier)
Smith DM, Mizumori SJ (2006). "Hippocampal place cells, context, and episodic memory". Hippocampus. 16 (9): 716–729. CiteSeerX 10.1.1.141.1450. doi:10.1002/hipo.20208. PMID 16897724. S2CID 720574. /wiki/CiteSeerX_(identifier)
Lian Y, Burkitt AN (2022). "Learning Spatiotemporal Properties of Hippocampal Place Cells". eNeuro. 9 (4). doi:10.1523/ENEURO.0519-21.2022. PMC 9282168. PMID 35760526. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282168
O'Keefe J, Recce ML (July 1993). "Phase relationship between hippocampal place units and the EEG theta rhythm". Hippocampus. 3 (3): 317–330. doi:10.1002/hipo.450030307. PMID 8353611. S2CID 6539236. /wiki/Doi_(identifier)
Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, et al. (September 2003). "Cellular networks underlying human spatial navigation" (PDF). Nature. 425 (6954): 184–188. Bibcode:2003Natur.425..184E. CiteSeerX 10.1.1.408.4443. doi:10.1038/nature01964. PMID 12968182. S2CID 1673654. Archived from the original on 2021-10-20. Retrieved 2013-01-24. http://memory.psych.upenn.edu/Publications#EkstEtal03
Duarte IC, Ferreira C, Marques J, Castelo-Branco M (2014-01-27). "Anterior/posterior competitive deactivation/activation dichotomy in the human hippocampus as revealed by a 3D navigation task". PLOS ONE. 9 (1): e86213. Bibcode:2014PLoSO...986213D. doi:10.1371/journal.pone.0086213. PMC 3903506. PMID 24475088. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903506
Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, et al. (April 2000). "Navigation-related structural change in the hippocampi of taxi drivers". Proceedings of the National Academy of Sciences of the United States of America. 97 (8): 4398–4403. Bibcode:2000PNAS...97.4398M. doi:10.1073/pnas.070039597. PMC 18253. PMID 10716738. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC18253
Leporé N, Shi Y, Lepore F, Fortin M, Voss P, Chou YY, et al. (July 2009). "Pattern of hippocampal shape and volume differences in blind subjects". NeuroImage. 46 (4): 949–957. doi:10.1016/j.neuroimage.2009.01.071. PMC 2736880. PMID 19285559. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736880
O'Neil EB, Newsome RN, Li IH, Thavabalasingam S, Ito R, Lee AC (November 2015). "Examining the Role of the Human Hippocampus in Approach-Avoidance Decision Making Using a Novel Conflict Paradigm and Multivariate Functional Magnetic Resonance Imaging". The Journal of Neuroscience. 35 (45): 15039–15049. doi:10.1523/jneurosci.1915-15.2015. PMC 6605357. PMID 26558775. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6605357
O'Neil EB, Newsome RN, Li IH, Thavabalasingam S, Ito R, Lee AC (November 2015). "Examining the Role of the Human Hippocampus in Approach-Avoidance Decision Making Using a Novel Conflict Paradigm and Multivariate Functional Magnetic Resonance Imaging". The Journal of Neuroscience. 35 (45): 15039–15049. doi:10.1523/jneurosci.1915-15.2015. PMC 6605357. PMID 26558775. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6605357
Ito R, Lee AC (October 2016). "The role of the hippocampus in approach-avoidance conflict decision-making: Evidence from rodent and human studies". Behavioural Brain Research. 313: 345–357. doi:10.1016/j.bbr.2016.07.039. PMID 27457133. https://doi.org/10.1016%2Fj.bbr.2016.07.039
Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (June 2005). "Invariant visual representation by single neurons in the human brain". Nature. 435 (7045): 1102–1107. Bibcode:2005Natur.435.1102Q. doi:10.1038/nature03687. PMID 15973409. S2CID 1234637. https://resolver.caltech.edu/CaltechAUTHORS:20130816-103222719
Sliwa J, Planté A, Duhamel JR, Wirth S (March 2016). "Independent Neuronal Representation of Facial and Vocal Identity in the Monkey Hippocampus and Inferotemporal Cortex". Cerebral Cortex. 26 (3): 950–966. doi:10.1093/cercor/bhu257. PMID 25405945. /wiki/Doi_(identifier)
Hitti FL, Siegelbaum SA (April 2014). "The hippocampal CA2 region is essential for social memory". Nature. 508 (7494): 88–92. Bibcode:2014Natur.508...88H. doi:10.1038/nature13028. PMC 4000264. PMID 24572357. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000264
Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S (September 2016). "Ventral CA1 neurons store social memory". Science. 353 (6307): 1536–1541. Bibcode:2016Sci...353.1536O. doi:10.1126/science.aaf7003. PMC 5493325. PMID 27708103. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493325
Meira T, Leroy F, Buss EW, Oliva A, Park J, Siegelbaum SA (October 2018). "A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics". Nature Communications. 9 (1): 4163. Bibcode:2018NatCo...9.4163M. doi:10.1038/s41467-018-06501-w. PMC 6178349. PMID 30301899. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6178349
Buzsáki G (2006). Rhythms of the Brain. Oxford University Press. ISBN 978-0-19-530106-9. 978-0-19-530106-9
Buzsáki G, Chen LS, Gage FH (1990). "Chapter 19 Chapter Spatial organization of physiological activity in the hippocampal region: Relevance to memory formation". Spatial organization of physiological activity in the hippocampal region: relevance to memory formation. Progress in Brain Research. Vol. 83. pp. 257–268. doi:10.1016/S0079-6123(08)61255-8. ISBN 978-0-444-81149-3. PMID 2203100. 978-0-444-81149-3
Squire LR (17 December 2012). "Learning and Memory: Brain Systems". In Ghosh A, Berg D, Bloom FE, Squire L, Spitzer NC, du Lac S (eds.). Fundamental Neuroscience (4th ed.). Amsterdam: Elsevier/Academic Press. p. 1038. ISBN 978-0-12-385871-9. OCLC 830351091. 978-0-12-385871-9
Colgin LL (April 2016). "Rhythms of the hippocampal network". Nature Reviews. Neuroscience. 17 (4): 239–249. doi:10.1038/nrn.2016.21. PMC 4890574. PMID 26961163. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890574
Radvansky BA, Oh JY, Climer JR, Dombeck DA (August 2021). "Behavior determines the hippocampal spatial mapping of a multisensory environment". Cell Reports. 36 (5): 109444. doi:10.1016/j.celrep.2021.109444. PMC 8382043. PMID 34293330. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382043
Buzsáki G, Chen LS, Gage FH (1990). "Chapter 19 Chapter Spatial organization of physiological activity in the hippocampal region: Relevance to memory formation". Spatial organization of physiological activity in the hippocampal region: relevance to memory formation. Progress in Brain Research. Vol. 83. pp. 257–268. doi:10.1016/S0079-6123(08)61255-8. ISBN 978-0-444-81149-3. PMID 2203100. 978-0-444-81149-3
Buzsáki G (October 2015). "Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning". Hippocampus. 25 (10): 1073–188. doi:10.1002/hipo.22488. PMC 4648295. PMID 26135716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648295
Skaggs WE, McNaughton BL, Permenter M, Archibeque M, Vogt J, Amaral DG, et al. (August 2007). "EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus". Journal of Neurophysiology. 98 (2): 898–910. doi:10.1152/jn.00401.2007. PMID 17522177. S2CID 941428. /wiki/Doi_(identifier)
Buzsáki G (January 2002). "Theta oscillations in the hippocampus". Neuron. 33 (3): 325–340. doi:10.1016/S0896-6273(02)00586-X. PMID 11832222. S2CID 15410690. https://doi.org/10.1016%2FS0896-6273%2802%2900586-X
Lubenov EV, Siapas AG (May 2009). "Hippocampal theta oscillations are travelling waves" (PDF). Nature. 459 (7246): 534–539. Bibcode:2009Natur.459..534L. doi:10.1038/nature08010. PMID 19489117. S2CID 4429491. Archived (PDF) from the original on 2018-07-23. Retrieved 2019-07-13. https://authors.library.caltech.edu/14755/2/Lubenov2009p4508Nature_supp.pdf
Komisaruk BR (March 1970). "Synchrony between limbic system theta activity and rhythmical behavior in rats". Journal of Comparative and Physiological Psychology. 70 (3): 482–492. doi:10.1037/h0028709. PMID 5418472. /wiki/Barry_Komisaruk
Cantero JL, Atienza M, Stickgold R, Kahana MJ, Madsen JR, Kocsis B (November 2003). "Sleep-dependent theta oscillations in the human hippocampus and neocortex". The Journal of Neuroscience. 23 (34): 10897–10903. doi:10.1523/JNEUROSCI.23-34-10897.2003. PMC 6740994. PMID 14645485. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740994
Vanderwolf CH (April 1969). "Hippocampal electrical activity and voluntary movement in the rat". Electroencephalography and Clinical Neurophysiology. 26 (4): 407–418. doi:10.1016/0013-4694(69)90092-3. PMID 4183562. /wiki/Doi_(identifier)
Buzsáki G (2006). Rhythms of the Brain. Oxford University Press. ISBN 978-0-19-530106-9. 978-0-19-530106-9
Huerta PT, Lisman JE (August 1993). "Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state". Nature. 364 (6439): 723–725. Bibcode:1993Natur.364..723H. doi:10.1038/364723a0. PMID 8355787. S2CID 4358000. /wiki/Bibcode_(identifier)
Numan R, Feloney MP, Pham KH, Tieber LM (December 1995). "Effects of medial septal lesions on an operant go/no-go delayed response alternation task in rats". Physiology & Behavior. 58 (6): 1263–1271. doi:10.1016/0031-9384(95)02044-6. PMID 8623030. S2CID 876694. Archived from the original on 2021-04-27. Retrieved 2020-03-09. https://www.sciencedirect.com/science/article/abs/pii/0031938495020446
Anderson P, Morris R, Amaral, Bliss T, O'Keefe J (2007). "The hippocampal formation". In Anderson P, Morris R, Amaral, Bliss T, O'Keefe J (eds.). The hippocampus book (first ed.). New York: Oxford University Press. pp. 3–77. ISBN 978-0195100273. Archived from the original on 2020-03-15. Retrieved 2016-12-15. 978-0195100273
Kahana MJ, Seelig D, Madsen JR (December 2001). "Theta returns". Current Opinion in Neurobiology. 11 (6): 739–744. doi:10.1016/S0959-4388(01)00278-1. PMID 11741027. S2CID 43829235. /wiki/Doi_(identifier)
Buzsáki G (November 1986). "Hippocampal sharp waves: their origin and significance". Brain Research. 398 (2): 242–252. doi:10.1016/0006-8993(86)91483-6. PMID 3026567. S2CID 37242634. /wiki/Doi_(identifier)
Skaggs WE, McNaughton BL, Permenter M, Archibeque M, Vogt J, Amaral DG, et al. (August 2007). "EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus". Journal of Neurophysiology. 98 (2): 898–910. doi:10.1152/jn.00401.2007. PMID 17522177. S2CID 941428. /wiki/Doi_(identifier)
Wilson MA, McNaughton BL (July 1994). "Reactivation of hippocampal ensemble memories during sleep". Science. 265 (5172): 676–679. Bibcode:1994Sci...265..676W. doi:10.1126/science.8036517. PMID 8036517. S2CID 890257. /wiki/Bibcode_(identifier)
Jackson JC, Johnson A, Redish AD (November 2006). "Hippocampal sharp waves and reactivation during awake states depend on repeated sequential experience". The Journal of Neuroscience. 26 (48): 12415–12426. doi:10.1523/JNEUROSCI.4118-06.2006. PMC 6674885. PMID 17135403. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674885
Sutherland GR, McNaughton B (April 2000). "Memory trace reactivation in hippocampal and neocortical neuronal ensembles". Current Opinion in Neurobiology. 10 (2): 180–186. doi:10.1016/S0959-4388(00)00079-9. PMID 10753801. S2CID 146539. /wiki/Grant_Robert_Sutherland
Buzsáki G (January 1989). "Two-stage model of memory trace formation: a role for "noisy" brain states". Neuroscience. 31 (3): 551–570. doi:10.1016/0306-4522(89)90423-5. PMID 2687720. S2CID 23957660. /wiki/Doi_(identifier)
Buzsáki G (January 1989). "Two-stage model of memory trace formation: a role for "noisy" brain states". Neuroscience. 31 (3): 551–570. doi:10.1016/0306-4522(89)90423-5. PMID 2687720. S2CID 23957660. /wiki/Doi_(identifier)
Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB (October 2009). "Selective suppression of hippocampal ripples impairs spatial memory". Nature Neuroscience. 12 (10): 1222–1223. doi:10.1038/nn.2384. PMID 19749750. S2CID 23637142. /wiki/Doi_(identifier)
Ego-Stengel V, Wilson MA (January 2010). "Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat". Hippocampus. 20 (1): 1–10. doi:10.1002/hipo.20707. PMC 2801761. PMID 19816984. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2801761
Kovács KA, O'Neill J, Schoenenberger P, Penttonen M, Ranguel Guerrero DK, Csicsvari J (19 Nov 2016). "Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus". PLOS ONE. 11 (10): e0164675. Bibcode:2016PLoSO..1164675K. doi:10.1371/journal.pone.0164675. PMC 5070819. PMID 27760158. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070819
Ramón y Cajal S (1894). "The Croonian Lecture: La Fine Structure des Centres Nerveux". Proceedings of the Royal Society. 55 (331–335): 444–468. Bibcode:1894RSPS...55..444C. doi:10.1098/rspl.1894.0063. https://doi.org/10.1098%2Frspl.1894.0063
Hebb DO (1949). Organization of Behavior: a Neuropsychological Theory. New York: John Wiley. ISBN 0-471-36727-3. {{cite book}}: ISBN / Date incompatibility (help) 0-471-36727-3
Bliss TV, Lomo T (July 1973). "Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path". The Journal of Physiology. 232 (2): 331–356. doi:10.1113/jphysiol.1973.sp010273. PMC 1350458. PMID 4727084. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1350458
Malenka RC, Bear MF (September 2004). "LTP and LTD: an embarrassment of riches". Neuron. 44 (1): 5–21. doi:10.1016/j.neuron.2004.09.012. PMID 15450156. S2CID 79844. https://doi.org/10.1016%2Fj.neuron.2004.09.012
Cooke SF, Bliss TV (July 2006). "Plasticity in the human central nervous system". Brain. 129 (Pt 7): 1659–1673. doi:10.1093/brain/awl082. PMID 16672292. https://doi.org/10.1093%2Fbrain%2Fawl082
Malenka RC, Bear MF (September 2004). "LTP and LTD: an embarrassment of riches". Neuron. 44 (1): 5–21. doi:10.1016/j.neuron.2004.09.012. PMID 15450156. S2CID 79844. https://doi.org/10.1016%2Fj.neuron.2004.09.012
Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S (May 2004). "NMDA receptors, place cells and hippocampal spatial memory". Nature Reviews. Neuroscience. 5 (5): 361–372. doi:10.1038/nrn1385. PMID 15100719. S2CID 7728258. /wiki/Doi_(identifier)
Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S (May 2004). "NMDA receptors, place cells and hippocampal spatial memory". Nature Reviews. Neuroscience. 5 (5): 361–372. doi:10.1038/nrn1385. PMID 15100719. S2CID 7728258. /wiki/Doi_(identifier)
Hampson RE, Song D, Robinson BS, Fetterhoff D, Dakos AS, Roeder BM, et al. (June 2018). "Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall". J Neural Eng. 15 (3): 036014. Bibcode:2018JNEng..15c6014H. doi:10.1088/1741-2552/aaaed7. PMC 6576290. PMID 29589592. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6576290
Prull MW, Gabrieli JD, Bunge SA (2000). "Ch 2. Age-related changes in memory: A cognitive neuroscience perspective". In Craik FI, Salthouse TA (eds.). The handbook of aging and cognition. Erlbaum. pp. 105–107. ISBN 978-0-8058-2966-2. 978-0-8058-2966-2
Prull MW, Gabrieli JD, Bunge SA (2000). "Ch 2. Age-related changes in memory: A cognitive neuroscience perspective". In Craik FI, Salthouse TA (eds.). The handbook of aging and cognition. Erlbaum. pp. 105–107. ISBN 978-0-8058-2966-2. 978-0-8058-2966-2
Prull MW, Gabrieli JD, Bunge SA (2000). "Ch 2. Age-related changes in memory: A cognitive neuroscience perspective". In Craik FI, Salthouse TA (eds.). The handbook of aging and cognition. Erlbaum. pp. 105–107. ISBN 978-0-8058-2966-2. 978-0-8058-2966-2
Prull MW, Gabrieli JD, Bunge SA (2000). "Ch 2. Age-related changes in memory: A cognitive neuroscience perspective". In Craik FI, Salthouse TA (eds.). The handbook of aging and cognition. Erlbaum. pp. 105–107. ISBN 978-0-8058-2966-2. 978-0-8058-2966-2
Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. (February 2011). "Exercise training increases size of hippocampus and improves memory". Proceedings of the National Academy of Sciences of the United States of America. 108 (7): 3017–3022. Bibcode:2011PNAS..108.3017E. doi:10.1073/pnas.1015950108. PMC 3041121. PMID 21282661. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041121
Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. (March 2016). "Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria". Alzheimer's & Dementia. 12 (3): 292–323. doi:10.1016/j.jalz.2016.02.002. PMC 6417794. PMID 27012484. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417794
"Cerebral Ischemia". Exon Publications. 2021. Retrieved 6 January 2025. https://www.ncbi.nlm.nih.gov/books/NBK575741/
Joëls M (April 2008). "Functional actions of corticosteroids in the hippocampus". European Journal of Pharmacology. 583 (2–3): 312–321. doi:10.1016/j.ejphar.2007.11.064. PMID 18275953. /wiki/Doi_(identifier)
Woon FL, Sood S, Hedges DW (October 2010). "Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 34 (7): 1181–1188. doi:10.1016/j.pnpbp.2010.06.016. PMID 20600466. S2CID 34575365. /wiki/Doi_(identifier)
Karl A, Schaefer M, Malta LS, Dörfel D, Rohleder N, Werner A (2006). "A meta-analysis of structural brain abnormalities in PTSD". Neuroscience and Biobehavioral Reviews. 30 (7): 1004–1031. doi:10.1016/j.neubiorev.2006.03.004. PMID 16730374. S2CID 15511760. /wiki/Doi_(identifier)
Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, Bullmore ET (January 2000). "Meta-analysis of regional brain volumes in schizophrenia". The American Journal of Psychiatry. 157 (1): 16–25. doi:10.1176/ajp.157.1.16. PMID 10618008. S2CID 22522434. /wiki/Sophia_Rabe-Hesketh
Kempton MJ, Salvador Z, Munafò MR, Geddes JR, Simmons A, Frangou S, et al. (July 2011). "Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder". Archives of General Psychiatry. 68 (7): 675–690. doi:10.1001/archgenpsychiatry.2011.60. PMID 21727252. see also MRI database at www.depressiondatabase.org Archived 2011-09-29 at the Wayback Machine https://doi.org/10.1001%2Farchgenpsychiatry.2011.60
Decker AL, Duncan K, Finn AS, Mabbott DJ (August 2020). "Children's family income is associated with cognitive function and volume of anterior not posterior hippocampus". Nature Communications. 11 (1): 4040. Bibcode:2020NatCo..11.4040D. doi:10.1038/s41467-020-17854-6. PMC 7423938. PMID 32788583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423938
Campbell S, Macqueen G (November 2004). "The role of the hippocampus in the pathophysiology of major depression". Journal of Psychiatry & Neuroscience. 29 (6): 417–426. PMC 524959. PMID 15644983. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC524959
Starkman MN, Giordani B, Gebarski SS, Berent S, Schork MA, Schteingart DE (December 1999). "Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing's disease". Biological Psychiatry. 46 (12): 1595–1602. doi:10.1016/s0006-3223(99)00203-6. PMID 10624540. S2CID 7294913. /wiki/Doi_(identifier)
Institute of Medicine (US) Forum on Neuroscience and Nervous System Disorders (2011). Overview of the Glutamatergic System. National Academies Press (US). Archived from the original on 1 September 2018. Retrieved 5 February 2017. https://www.ncbi.nlm.nih.gov/books/NBK62187/
Institute of Medicine (US) Forum on Neuroscience and Nervous System Disorders (2011). Overview of the Glutamatergic System. National Academies Press (US). Archived from the original on 1 September 2018. Retrieved 5 February 2017. https://www.ncbi.nlm.nih.gov/books/NBK62187/
Starkman MN, Giordani B, Gebarski SS, Berent S, Schork MA, Schteingart DE (December 1999). "Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing's disease". Biological Psychiatry. 46 (12): 1595–1602. doi:10.1016/s0006-3223(99)00203-6. PMID 10624540. S2CID 7294913. /wiki/Doi_(identifier)
Institute of Medicine (US) Forum on Neuroscience and Nervous System Disorders (2011). Overview of the Glutamatergic System. National Academies Press (US). Archived from the original on 1 September 2018. Retrieved 5 February 2017. https://www.ncbi.nlm.nih.gov/books/NBK62187/
Garcia-Segura LM (2009). Hormones and Brain Plasticity. Oxford University Press US. pp. 170–171. ISBN 978-0-19-532661-1. 978-0-19-532661-1
Conrad CD (2008). "Chronic stress-induced hippocampal vulnerability: the glucocorticoid vulnerability hypothesis". Reviews in the Neurosciences. 19 (6): 395–411. doi:10.1515/revneuro.2008.19.6.395. PMC 2746750. PMID 19317179. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746750
Ortiz JB, McLaughlin KJ, Hamilton GF, Baran SE, Campbell AN, Conrad CD (August 2013). "Cholesterol and perhaps estradiol protect against corticosterone-induced hippocampal CA3 dendritic retraction in gonadectomized female and male rats". Neuroscience. 246: 409–421. doi:10.1016/j.neuroscience.2013.04.027. PMC 3703463. PMID 23618757. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703463
Consiglio AR, Ramos AL, Henriques JA, Picada JN (May 2010). "DNA brain damage after stress in rats". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 34 (4): 652–656. doi:10.1016/j.pnpbp.2010.03.004. PMID 20226828. S2CID 38959073. https://doi.org/10.1016%2Fj.pnpbp.2010.03.004
Kuruba R, Hattiangady B, Shetty AK (January 2009). "Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy". Epilepsy & Behavior. 14 (Suppl 1): 65–73. doi:10.1016/j.yebeh.2008.08.020. PMC 2654382. PMID 18796338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654382
Kuruba R, Hattiangady B, Shetty AK (January 2009). "Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy". Epilepsy & Behavior. 14 (Suppl 1): 65–73. doi:10.1016/j.yebeh.2008.08.020. PMC 2654382. PMID 18796338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654382
Thom M (August 2014). "Review: Hippocampal sclerosis in epilepsy: a neuropathology review". Neuropathology and Applied Neurobiology. 40 (5): 520–543. doi:10.1111/nan.12150. PMC 4265206. PMID 24762203. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265206
Chang BS, Lowenstein DH (September 2003). "Epilepsy". The New England Journal of Medicine. 349 (13): 1257–1266. doi:10.1056/NEJMra022308. PMID 14507951. /wiki/Daniel_H._Lowenstein_(physician)
Sloviter RS (February 2005). "The neurobiology of temporal lobe epilepsy: too much information, not enough knowledge". Comptes Rendus Biologies. 328 (2): 143–153. doi:10.1016/j.crvi.2004.10.010. PMID 15771000. https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/j.crvi.2004.10.010/
Institute of Medicine (US) Forum on Neuroscience and Nervous System Disorders (2011). Overview of the Glutamatergic System. National Academies Press (US). Archived from the original on 1 September 2018. Retrieved 5 February 2017. https://www.ncbi.nlm.nih.gov/books/NBK62187/
Kuruba R, Hattiangady B, Shetty AK (January 2009). "Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy". Epilepsy & Behavior. 14 (Suppl 1): 65–73. doi:10.1016/j.yebeh.2008.08.020. PMC 2654382. PMID 18796338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654382
Institute of Medicine (US) Forum on Neuroscience and Nervous System Disorders (2011). Overview of the Glutamatergic System. National Academies Press (US). Archived from the original on 1 September 2018. Retrieved 5 February 2017. https://www.ncbi.nlm.nih.gov/books/NBK62187/
Harrison PJ (June 2004). "The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications". Psychopharmacology. 174 (1): 151–162. doi:10.1007/s00213-003-1761-y. PMID 15205886. S2CID 12388920. /wiki/Doi_(identifier)
Antoniades M, Schoeler T, Radua J, Valli I, Allen P, Kempton MJ, et al. (March 2018). "Verbal learning and hippocampal dysfunction in schizophrenia: A meta-analysis" (PDF). Neuroscience and Biobehavioral Reviews. 86: 166–175. doi:10.1016/j.neubiorev.2017.12.001. PMC 5818020. PMID 29223768. Archived (PDF) from the original on 2018-07-25. Retrieved 2018-11-23. http://discovery.ucl.ac.uk/10045938/1/Antoniades_Verbal%20learning%20and%20hippocampal.pdf
Harrison PJ (June 2004). "The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications". Psychopharmacology. 174 (1): 151–162. doi:10.1007/s00213-003-1761-y. PMID 15205886. S2CID 12388920. /wiki/Doi_(identifier)
Duncan LE, Li T, Salem M, Li W, Mortazavi L, Senturk H, et al. (February 2025). "Mapping the cellular etiology of schizophrenia and complex brain phenotypes". Nature Neuroscience. 28 (2): 248–258. doi:10.1038/s41593-024-01834-w. PMC 11802450. PMID 39833308. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802450
Pines AR, Frandsen SB, Drew W, Meyer GM, Howard C, Palm ST, et al. (February 2025). "Mapping Lesions That Cause Psychosis to a Human Brain Circuit and Proposed Stimulation Target". JAMA Psychiatry. doi:10.1001/jamapsychiatry.2024.4534. PMC 11822627. PMID 39937525. /wiki/Doi_(identifier)
Goto Y, Grace AA (November 2008). "Limbic and cortical information processing in the nucleus accumbens". Trends in Neurosciences. 31 (11): 552–558. doi:10.1016/j.tins.2008.08.002. PMC 2884964. PMID 18786735. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884964
Boyer P, Phillips JL, Rousseau FL, Ilivitsky S (April 2007). "Hippocampal abnormalities and memory deficits: new evidence of a strong pathophysiological link in schizophrenia". Brain Research Reviews. 54 (1): 92–112. doi:10.1016/j.brainresrev.2006.12.008. PMID 17306884. S2CID 44832178. /wiki/Doi_(identifier)
Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V (February 2011). "Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia". Archives of General Psychiatry. 68 (2): 128–137. doi:10.1001/archgenpsychiatry.2010.199. PMC 3476840. PMID 21300943. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3476840
Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, Borgwardt S (September 2013). "Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies". Neuroscience and Biobehavioral Reviews. 37 (8): 1680–1691. doi:10.1016/j.neubiorev.2013.06.001. PMC 3964856. PMID 23769814. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964856
Haukvik UK, Hartberg CB, Agartz I (April 2013). "Schizophrenia--what does structural MRI show?". Tidsskrift for den Norske Laegeforening. 133 (8): 850–853. doi:10.4045/tidsskr.12.1084. PMID 23612107. https://doi.org/10.4045%2Ftidsskr.12.1084
Harrison PJ (June 2004). "The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications". Psychopharmacology. 174 (1): 151–162. doi:10.1007/s00213-003-1761-y. PMID 15205886. S2CID 12388920. /wiki/Doi_(identifier)
Harrison PJ (June 2004). "The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications". Psychopharmacology. 174 (1): 151–162. doi:10.1007/s00213-003-1761-y. PMID 15205886. S2CID 12388920. /wiki/Doi_(identifier)
Harrison PJ (June 2004). "The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications". Psychopharmacology. 174 (1): 151–162. doi:10.1007/s00213-003-1761-y. PMID 15205886. S2CID 12388920. /wiki/Doi_(identifier)
Harrison PJ, Eastwood SL (2001). "Neuropathological studies of synaptic connectivity in the hippocampal formation in schizophrenia". Hippocampus. 11 (5): 508–519. doi:10.1002/hipo.1067. PMID 11732704. S2CID 2502525. /wiki/Doi_(identifier)
Harrison PJ, Eastwood SL (2001). "Neuropathological studies of synaptic connectivity in the hippocampal formation in schizophrenia". Hippocampus. 11 (5): 508–519. doi:10.1002/hipo.1067. PMID 11732704. S2CID 2502525. /wiki/Doi_(identifier)
Harrison PJ (June 2004). "The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications". Psychopharmacology. 174 (1): 151–162. doi:10.1007/s00213-003-1761-y. PMID 15205886. S2CID 12388920. /wiki/Doi_(identifier)
Nishioka N, Arnold SE (2004). "Evidence for oxidative DNA damage in the hippocampus of elderly patients with chronic schizophrenia". The American Journal of Geriatric Psychiatry. 12 (2): 167–175. doi:10.1097/00019442-200403000-00008. PMID 15010346. /wiki/Doi_(identifier)
Szabo K (2014). "Transient global amnesia". The Hippocampus in Clinical Neuroscience. Frontiers of Neurology and Neuroscience. Vol. 34. pp. 143–149. doi:10.1159/000356431. ISBN 978-3-318-02567-5. PMID 24777137. Archived from the original on 2021-09-23. Retrieved 2018-08-15. 978-3-318-02567-5
Lewis SL (August 1998). "Aetiology of transient global amnesia". Lancet. 352 (9125): 397–399. doi:10.1016/S0140-6736(98)01442-1. PMID 9717945. S2CID 12779088. /wiki/Doi_(identifier)
Chung CP, Hsu HY, Chao AC, Chang FC, Sheng WY, Hu HH (June 2006). "Detection of intracranial venous reflux in patients of transient global amnesia". Neurology. 66 (12): 1873–1877. doi:10.1212/01.wnl.0000219620.69618.9d. PMID 16801653. S2CID 39724390. /wiki/Doi_(identifier)
Szabo K (2014). "Transient global amnesia". The Hippocampus in Clinical Neuroscience. Frontiers of Neurology and Neuroscience. Vol. 34. pp. 143–149. doi:10.1159/000356431. ISBN 978-3-318-02567-5. PMID 24777137. Archived from the original on 2021-09-23. Retrieved 2018-08-15. 978-3-318-02567-5
Bonne O, Vythilingam M, Inagaki M, Wood S, Neumeister A, Nugent AC, et al. (July 2008). "Reduced posterior hippocampal volume in posttraumatic stress disorder". The Journal of Clinical Psychiatry. 69 (7): 1087–1091. doi:10.4088/jcp.v69n0707. PMC 2684983. PMID 18572983. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684983
Apfel BA, Ross J, Hlavin J, Meyerhoff DJ, Metzler TJ, Marmar CR, et al. (March 2011). "Hippocampal volume differences in Gulf War veterans with current versus lifetime posttraumatic stress disorder symptoms". Biological Psychiatry. 69 (6): 541–548. doi:10.1016/j.biopsych.2010.09.044. PMC 3259803. PMID 21094937. Archived from the original on 2019-12-04. Retrieved 2017-08-14. http://www.biologicalpsychiatryjournal.com/article/S0006-3223(10)01013-9/fulltext
Carlson NR (2014). Physiology of Behavior (11 ed.). Pearson Education. p. 624. ISBN 978-1-292-02320-5. 978-1-292-02320-5
Jatzko A, Rothenhöfer S, Schmitt A, Gaser C, Demirakca T, Weber-Fahr W, et al. (August 2006). "Hippocampal volume in chronic posttraumatic stress disorder (PTSD): MRI study using two different evaluation methods" (PDF). Journal of Affective Disorders. 94 (1–3): 121–126. doi:10.1016/j.jad.2006.03.010. PMID 16701903. Archived (PDF) from the original on 2013-10-19. Retrieved 2017-08-14. http://dbm.neuro.uni-jena.de/pdf-files/Jatzko-JAD06.pdf
Stern R (September–October 2019). "The New Phrenology". Skeptical Inquirer. Vol. 43, no. 5. Center for Inquiry. pp. 52–56. Archived from the original on 2020-04-29. Retrieved 2020-03-20. https://skepticalinquirer.org/2019/09/the-new-phrenology/
Rubin M, Shvil E, Papini S, Chhetry BT, Helpman L, Markowitz JC, et al. (June 2016). "Greater hippocampal volume is associated with PTSD treatment response". Psychiatry Research: Neuroimaging. 252: 36–39. doi:10.1016/j.pscychresns.2016.05.001. PMC 4896219. PMID 27179314. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896219
Bilgüvar K, Oztürk AK, Louvi A, Kwan KY, Choi M, Tatli B, et al. (September 2010). "Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations". Nature. 467 (7312): 207–210. Bibcode:2010Natur.467..207B. doi:10.1038/nature09327. PMC 3129007. PMID 20729831. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129007
Shohayeb B, Ho UY, Hassan H, Piper M, Ng DC (2020). "The Spindle-Associated Microcephaly Protein, WDR62, Is Required for Neurogenesis and Development of the Hippocampus". Frontiers in Cell and Developmental Biology. 8: 549353. doi:10.3389/fcell.2020.549353. PMC 7517699. PMID 33042990. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517699
Aboitiz F, Morales D, Montiel J (October 2003). "The evolutionary origin of the mammalian isocortex: towards an integrated developmental and functional approach". The Behavioral and Brain Sciences. 26 (5): 535–552. doi:10.1017/S0140525X03000128. PMID 15179935. S2CID 6599761. /wiki/Doi_(identifier)
Bingman VP, Salas C, Rodriguez F (2009). "Evolution of the Hippocampus". In Binder MD, Hirokawa N, Windhorst U (eds.). Encyclopedia of Neuroscience. Berlin, Heidelberg: Springer. pp. 1356–1360. doi:10.1007/978-3-540-29678-2_3158. ISBN 978-3-540-29678-2. 978-3-540-29678-2
Rodríguez F, López JC, Vargas JP, Broglio C, Gómez Y, Salas C (2002). "Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish". Brain Research Bulletin. 57 (3–4): 499–503. doi:10.1016/S0361-9230(01)00682-7. PMID 11923018. S2CID 40858078. /wiki/Doi_(identifier)
Hegarty BE, Gruenhagen GW, Johnson ZV, Baker CM, Streelman JT (May 2024). "Spatially resolved cell atlas of the teleost telencephalon and deep homology of the vertebrate forebrain". Commun Biol. 7 (1): 612. doi:10.1038/s42003-024-06315-1. PMC 11109250. PMID 38773256. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109250
Broglio C, Gómez A, Durán E, Ocaña FM, Jiménez-Moya F, Rodríguez F, et al. (September 2005). "Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish". Brain Res Bull. 66 (4–6): 277–81. doi:10.1016/j.brainresbull.2005.03.021. PMID 16144602. /wiki/Doi_(identifier)
Jacobs LF (2003). "The evolution of the cognitive map". Brain, Behavior and Evolution. 62 (2): 128–139. doi:10.1159/000072443. PMID 12937351. S2CID 16102408. /wiki/Doi_(identifier)
Givon S, Altsuler-Nagar R, Oring N, Vinepinsky E, Segev R (October 2023). "Lateral and medial telencephalic pallium lesions impair spatial memory in goldfish". Brain Res Bull. 204: 110802. doi:10.1016/j.brainresbull.2023.110802. PMID 39492553. https://doi.org/10.1016%2Fj.brainresbull.2023.110802
Vargas JP, Bingman VP, Portavella M, López JC (November 2006). "Telencephalon and geometric space in goldfish". The European Journal of Neuroscience. 24 (10): 2870–2878. doi:10.1111/j.1460-9568.2006.05174.x. PMID 17156211. S2CID 23884328. /wiki/Doi_(identifier)
Docampo-Seara A, Lagadec R, Mazan S, Rodríguez MA, Quintana-Urzainqui I, Candal E (November 2018). "Study of pallial neurogenesis in shark embryos and the evolutionary origin of the subventricular zone". Brain Structure & Function. 223 (8): 3593–3612. doi:10.1007/s00429-018-1705-2. hdl:10347/17636. PMID 29980930. https://doi.org/10.1007%2Fs00429-018-1705-2
Rodríguez F, Quintero B, Amores L, Madrid D, Salas-Peña C, Salas C (July 2021). "Spatial Cognition in Teleost Fish: Strategies and Mechanisms". Animals. 11 (8): 2271. doi:10.3390/ani11082271. PMC 8388456. PMID 34438729. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388456
Givon S, Altsuler-Nagar R, Oring N, Vinepinsky E, Segev R (October 2023). "Lateral and medial telencephalic pallium lesions impair spatial memory in goldfish". Brain Res Bull. 204: 110802. doi:10.1016/j.brainresbull.2023.110802. PMID 39492553. https://doi.org/10.1016%2Fj.brainresbull.2023.110802
Colombo M, Broadbent N (June 2000). "Is the avian hippocampus a functional homologue of the mammalian hippocampus?". Neuroscience and Biobehavioral Reviews. 24 (4): 465–484. doi:10.1016/S0149-7634(00)00016-6. PMID 10817844. S2CID 22686204. /wiki/Doi_(identifier)
Shettleworth SJ (2003). "Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognition". Brain, Behavior and Evolution. 62 (2): 108–116. doi:10.1159/000072441. PMID 12937349. S2CID 23546600. /wiki/Doi_(identifier)
Mizunami M, Weibrecht JM, Strausfeld NJ (December 1998). "Mushroom bodies of the cockroach: their participation in place memory". The Journal of Comparative Neurology. 402 (4): 520–537. doi:10.1002/(SICI)1096-9861(19981228)402:4<520::AID-CNE6>3.0.CO;2-K. PMID 9862324. S2CID 44384958. /wiki/Doi_(identifier)
Jacobs RE (February 2022). "Diffusion MRI Connections in the Octopus Brain". Exp Neurobiol. 31 (1): 17–28. doi:10.5607/en21047. PMC 8907252. PMID 35256541. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907252
Richter JN, Hochner B, Kuba MJ (2016). "Pull or Push? Octopuses Solve a Puzzle Problem". PLOS ONE. 11 (3): e0152048. Bibcode:2016PLoSO..1152048R. doi:10.1371/journal.pone.0152048. PMC 4803207. PMID 27003439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803207