Let R {\displaystyle R} be an integral domain, and let K = Frac R {\displaystyle K=\operatorname {Frac} R} be its field of fractions.
A fractional ideal of R {\displaystyle R} is an R {\displaystyle R} -submodule I {\displaystyle I} of K {\displaystyle K} such that there exists a non-zero r ∈ R {\displaystyle r\in R} such that r I ⊆ R {\displaystyle rI\subseteq R} . The element r {\displaystyle r} can be thought of as clearing out the denominators in I {\displaystyle I} , hence the name fractional ideal.
The principal fractional ideals are those R {\displaystyle R} -submodules of K {\displaystyle K} generated by a single nonzero element of K {\displaystyle K} . A fractional ideal I {\displaystyle I} is contained in R {\displaystyle R} if and only if it is an (integral) ideal of R {\displaystyle R} .
A fractional ideal I {\displaystyle I} is called invertible if there is another fractional ideal J {\displaystyle J} such that
where
is the product of the two fractional ideals.
In this case, the fractional ideal J {\displaystyle J} is uniquely determined and equal to the generalized ideal quotient
The set of invertible fractional ideals form an commutative group with respect to the above product, where the identity is the unit ideal ( 1 ) = R {\displaystyle (1)=R} itself. This group is called the group of fractional ideals of R {\displaystyle R} . The principal fractional ideals form a subgroup. A (nonzero) fractional ideal is invertible if and only if it is projective as an R {\displaystyle R} -module. Geometrically, this means an invertible fractional ideal can be interpreted as rank 1 vector bundle over the affine scheme Spec ( R ) {\displaystyle {\text{Spec}}(R)} .
Every finitely generated R-submodule of K is a fractional ideal and if R {\displaystyle R} is noetherian these are all the fractional ideals of R {\displaystyle R} .
In Dedekind domains, the situation is much simpler. In particular, every non-zero fractional ideal is invertible. In fact, this property characterizes Dedekind domains:
The set of fractional ideals over a Dedekind domain R {\displaystyle R} is denoted Div ( R ) {\displaystyle {\text{Div}}(R)} .
Its quotient group of fractional ideals by the subgroup of principal fractional ideals is an important invariant of a Dedekind domain called the ideal class group.
For the special case of number fields K {\displaystyle K} (such as Q ( ζ n ) {\displaystyle \mathbb {Q} (\zeta _{n})} , where ζ n {\displaystyle \zeta _{n}} = exp(2π i/n)) there is an associated ring denoted O K {\displaystyle {\mathcal {O}}_{K}} called the ring of integers of K {\displaystyle K} . For example, O Q ( d ) = Z [ d ] {\displaystyle {\mathcal {O}}_{\mathbb {Q} ({\sqrt {d}}\,)}=\mathbb {Z} [{\sqrt {d}}\,]} for d {\displaystyle d} square-free and congruent to 2 , 3 ( mod 4 ) {\displaystyle 2,3{\text{ }}({\text{mod }}4)} . The key property of these rings O K {\displaystyle {\mathcal {O}}_{K}} is they are Dedekind domains. Hence the theory of fractional ideals can be described for the rings of integers of number fields. In fact, class field theory is the study of such groups of class rings.
For the ring of integers1pg 2 O K {\displaystyle {\mathcal {O}}_{K}} of a number field, the group of fractional ideals forms a group denoted I K {\displaystyle {\mathcal {I}}_{K}} and the subgroup of principal fractional ideals is denoted P K {\displaystyle {\mathcal {P}}_{K}} . The ideal class group is the group of fractional ideals modulo the principal fractional ideals, so
and its class number h K {\displaystyle h_{K}} is the order of the group, h K = | C K | {\displaystyle h_{K}=|{\mathcal {C}}_{K}|} . In some ways, the class number is a measure for how "far" the ring of integers O K {\displaystyle {\mathcal {O}}_{K}} is from being a unique factorization domain (UFD). This is because h K = 1 {\displaystyle h_{K}=1} if and only if O K {\displaystyle {\mathcal {O}}_{K}} is a UFD.
There is an exact sequence
associated to every number field.
One of the important structure theorems for fractional ideals of a number field states that every fractional ideal I {\displaystyle I} decomposes uniquely up to ordering as
for prime ideals
in the spectrum of O K {\displaystyle {\mathcal {O}}_{K}} . For example,
Also, because fractional ideals over a number field are all finitely generated we can clear denominators by multiplying by some α {\displaystyle \alpha } to get an ideal J {\displaystyle J} . Hence
Another useful structure theorem is that integral fractional ideals are generated by up to 2 elements. We call a fractional ideal which is a subset of O K {\displaystyle {\mathcal {O}}_{K}} integral.
Let I ~ {\displaystyle {\tilde {I}}} denote the intersection of all principal fractional ideals containing a nonzero fractional ideal I {\displaystyle I} .
Equivalently,
where as above
If I ~ = I {\displaystyle {\tilde {I}}=I} then I is called divisorial.2 In other words, a divisorial ideal is a nonzero intersection of some nonempty set of fractional principal ideals.
If I is divisorial and J is a nonzero fractional ideal, then (I : J) is divisorial.
Let R be a local Krull domain (e.g., a Noetherian integrally closed local domain). Then R is a discrete valuation ring if and only if the maximal ideal of R is divisorial.3
An integral domain that satisfies the ascending chain conditions on divisorial ideals is called a Mori domain.4
Childress, Nancy (2009). Class field theory. New York: Springer. ISBN 978-0-387-72490-4. OCLC 310352143. 978-0-387-72490-4 ↩
Bourbaki 1998, §VII.1 - Bourbaki, Nicolas (1998), Commutative algebra (2nd ed.), Springer Verlag, ISBN 3-540-64239-0 ↩
Bourbaki 1998, Ch. VII, § 1, n. 7. Proposition 11. - Bourbaki, Nicolas (1998), Commutative algebra (2nd ed.), Springer Verlag, ISBN 3-540-64239-0 ↩
Barucci 2000. - Barucci, Valentina (2000), "Mori domains", in Glaz, Sarah; Chapman, Scott T. (eds.), Non-Noetherian commutative ring theory, Mathematics and its Applications, vol. 520, Dordrecht: Kluwer Acad. Publ., pp. 57–73, ISBN 978-0-7923-6492-4, MR 1858157 https://books.google.com/books?id=0tuZkZE07TEC ↩