Latent variables, as created by factor analytic methods, generally represent "shared" variance, or the degree to which variables "move" together. Variables that have no correlation cannot result in a latent construct based on the common factor model.3
Examples of latent variables from the field of economics include quality of life, business confidence, morale, happiness and conservatism: these are all variables which cannot be measured directly. But linking these latent variables to other, observable variables, the values of the latent variables can be inferred from measurements of the observable variables. Quality of life is a latent variable which cannot be measured directly so observable variables are used to infer quality of life. Observable variables to measure quality of life include wealth, employment, environment, physical and mental health, education, recreation and leisure time, and social belonging.
Latent-variable methodology is used in many branches of medicine. A class of problems that naturally lend themselves to latent variables approaches are longitudinal studies where the time scale (e.g. age of participant or time since study baseline) is not synchronized with the trait being studied. For such studies, an unobserved time scale that is synchronized with the trait being studied can be modeled as a transformation of the observed time scale using latent variables. Examples of this include disease progression modeling and modeling of growth (see box).
There exists a range of different model classes and methodology that make use of latent variables and allow inference in the presence of latent variables. Models include:
Analysis and inference methods include:
Bayesian statistics is often used for inferring latent variables.
Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9 /wiki/ISBN_(identifier) ↩
Bacon, Francis. "APHORISMS—BOOK II: ON THE INTERPRETATION OF NATURE, OR THE REIGN OF MAN". Novum Organum. https://www.gutenberg.org/files/45988/45988-h/45988-h.htm ↩
Tabachnick, B.G.; Fidell, L.S. (2001). Using Multivariate Analysis. Boston: Allyn and Bacon. ISBN 978-0-321-05677-1.[page needed] 978-0-321-05677-1 ↩
Borsboom, D.; Mellenbergh, G.J.; van Heerden, J. (2003). "The Theoretical Status of Latent Variables" (PDF). Psychological Review. 110 (2): 203–219. CiteSeerX 10.1.1.134.9704. doi:10.1037/0033-295X.110.2.203. PMID 12747522. Archived from the original (PDF) on 2013-01-20. Retrieved 2008-04-08. /wiki/Gideon_J._Mellenbergh ↩
Greene, Jeffrey A.; Brown, Scott C. (2009). "The Wisdom Development Scale: Further Validity Investigations". International Journal of Aging and Human Development. 68 (4): 289–320 (at p. 291). doi:10.2190/AG.68.4.b. PMID 19711618. /wiki/Doi_(identifier) ↩
Spearman, C. (1904). ""General Intelligence," Objectively Determined and Measured". The American Journal of Psychology. 15 (2): 201–292. doi:10.2307/1412107. JSTOR 1412107. /wiki/Charles_Spearman ↩
Kelly, Bryan T. and Pruitt, Seth and Su, Yinan, Instrumented Principal Component Analysis (December 17, 2020). Available at SSRN: https://ssrn.com/abstract=2983919 or http://dx.doi.org/10.2139/ssrn.2983919 https://ssrn.com/abstract=2983919 ↩