The core of the experiment is a stainless steel chamber of 26 m3 volume filled with synthetic air made from liquid nitrogen and liquid oxygen. The chamber atmosphere and pressure is being measured and regulated by various instrumentations. The aerosol chamber can be exposed to an adjustable particle beam simulating GCRs at various altitude or latitude. UV illumination allows photolytic reaction. The chamber contains an electric field cage to control the drift of small ions and charged aerosols. The ionisation produced by cosmic rays can be removed with a strong electric field. Besides, humidity and temperature inside the chamber can be regulated, allowing for fast adiabatic expansion for artificial clouds (compare cloud chamber) or experiments on ice microphysics. According to Kirkby "the level of cleanliness and control in a laboratory experiment is at the limit of current technology, and CERN know-how has been crucial for CLOUD being the first experiment to achieve this performance."
CERN posted a 2009 progress report on the CLOUD project. J. Kirkby (2009) reviews developments in the CERN CLOUD project and planned tests. He describes cloud nucleation mechanisms which appear energetically favourable and depend on GCRs.
The first CLOUD experiments showed that sulphuric acid (derived from sulphur dioxide, for which fossil fuels are the predominant source) as such has a much smaller effect than had been assumed. In 2014, CLOUD researchers presented newer experimental results showing an interaction between oxidised biogenic vapours (e.g., alpha-pinene emitted by trees) and sulphuric acid. Ions produced in the atmosphere by galactic cosmic rays enhance the formation rate of these particles significantly, provided the concentrations of sulphuric acid and oxidised organic vapours are quite low. This new process may account for seasonal variations in atmospheric aerosol particles, which are being related to higher global tree emissions in the northern hemisphere summer.
CLOUD official website http://cloud.web.cern.ch/
CLOUD experiment provides unprecedented insight into cloud formation, CERN http://press.web.cern.ch/press-releases/2011/08/cerns-cloud-experiment-provides-unprecedented-insight-cloud-formation
The Cloud Collaboration (2001-04-16). "A study of the link between cosmic rays and clouds with a cloud chamber at the CERN PS". arXiv:physics/0104048. /wiki/ArXiv_(identifier)
Svensmark, Henrik; Friis-Christensen, Eigil (1997-07-01). "Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships". Journal of Atmospheric and Solar-Terrestrial Physics. 59 (11): 1225–1232. Bibcode:1997JASTP..59.1225S. doi:10.1016/S1364-6826(97)00001-1. ISSN 1364-6826. https://www.sciencedirect.com/science/article/abs/pii/S1364682697000011
CLOUD official website http://cloud.web.cern.ch/
"CERN experiment sheds new light on cloud formation | CERN". home.cern. Dan Noyes. 16 May 2014. Retrieved 2015-12-02. http://home.cern/about/updates/2014/05/cern-experiment-sheds-new-light-cloud-formation
2009 Progress report on PS215/CLOUD Kirkby, Jasper, The CLOUD Collaboration, CERN, Geneva, SPS and PS Experiments Committee, CERN-SPSC-2010-013, April 7, 2010 http://cdsweb.cern.ch/record/1257940/files/SPSC-SR-061.pdf
Cosmic Rays and Climate Video Jasper Kirkby, CERN Colloquium, 4 June 2009 http://cdsweb.cern.ch/record/1181073/
Cosmic Rays and Climate Presentation Jasper Kirkby, CERN Colloquium, 4 June 2009 http://indico.cern.ch/getFile.py/access?resId=0&materialId=slides&confId=52576
Kirkby, Jasper; Curtius, Joachim; Almeida, João; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Franchin, Alessandro; Gagné, Stéphanie; Ickes, Luisa; Kürten, Andreas; Kupc, Agnieszka; Metzger, Axel; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Tsagkogeorgas, Georgios; Wimmer, Daniela; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Downard, Andrew; Ehn, Mikael; Flagan, Richard C.; Haider, Stefan; Hansel, Armin; Hauser, Daniel; Jud, Werner; Junninen, Heikki; Kreissl, Fabian; Kvashin, Alexander; Laaksonen, Ari; Lehtipalo, Katrianne; Lima, Jorge; Lovejoy, Edward R.; Makhmutov, Vladimir; Mathot, Serge; Mikkilä, Jyri; Minginette, Pierre; Mogo, Sandra; Nieminen, Tuomo; Onnela, Antti; Pereira, Paulo; Petäjä, Tuukka; Schnitzhofer, Ralf; Seinfeld, John H.; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Vanhanen, Joonas; Viisanen, Yrjo; Vrtala, Aron; Wagner, Paul E.; Walther, Hansueli; Weingartner, Ernest; Wex, Heike; Winkler, Paul M.; Carslaw, Kenneth S.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku (2011-08-25). "Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation" (PDF). Nature. 476 (7361): 429–433. Bibcode:2011Natur.476..429K. doi:10.1038/nature10343. ISSN 0028-0836. PMID 21866156. S2CID 4326159. https://authors.library.caltech.edu/25275/2/nature10343-s1.pdf
"CERN experiment sheds new light on cloud formation | CERN". home.cern. Dan Noyes. 16 May 2014. Retrieved 2015-12-02. http://home.cern/about/updates/2014/05/cern-experiment-sheds-new-light-cloud-formation
Riccobono, Francesco; Schobesberger, Siegfried; Scott, Catherine E.; Dommen, Josef; Ortega, Ismael K.; Rondo, Linda; Almeida, João; Amorim, Antonio; Bianchi, Federico (2014-05-16). "Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles". Science. 344 (6185): 717–721. Bibcode:2014Sci...344..717R. doi:10.1126/science.1243527. ISSN 0036-8075. PMID 24833386. S2CID 206551402. https://cds.cern.ch/record/1702050
Almeida et al. (2013) Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 502:359-363. At http://www.readcube.com/articles/10.1038/nature12663 http://www.readcube.com/articles/10.1038/nature12663
"CERN's CLOUD experiment shines new light on climate change". 18 July 2024. http://press.web.cern.ch/press-releases/2013/10/cerns-cloud-experiment-shines-new-light-climate-change
Dunne, E. M.; Gordon, H.; Kurten, A.; Almeida, J.; Duplissy, J.; Williamson, C.; Ortega, I. K.; Pringle, K. J.; Adamov, A.; Baltensperger, U.; Barmet, P.; Benduhn, F.; Bianchi, F.; Breitenlechner, M.; Clarke, A.; Curtius, J.; Dommen, J.; Donahue, N. M.; Ehrhart, S.; Flagan, R. C.; Franchin, A.; Guida, R.; Hakala, J.; Hansel, A.; Heinritzi, M.; Jokinen, T.; Kangasluoma, J.; Kirkby, J.; Kulmala, M.; Kupc, A.; Lawler, M. J.; Lehtipalo, K.; Makhmutov, V.; Mann, G.; Mathot, S.; Merikanto, J.; Miettinen, P.; Nenes, A.; Onnela, A.; Rap, A.; Reddington, C. L. S.; Riccobono, F.; Richards, N. A. D.; Rissanen, M. P.; Rondo, L.; Sarnela, N.; Schobesberger, S.; Sengupta, K.; Simon, M.; Sipila, M.; Smith, J. N.; Stozkhov, Y.; Tome, A.; Trostl, J.; Wagner, P. E.; Wimmer, D.; Winkler, P. M.; Worsnop, D. R.; Carslaw, K. S. (2016-12-02). "Global atmospheric particle formation from CERN CLOUD measurements" (PDF). Science. 354 (6316): 1119–1124. Bibcode:2016Sci...354.1119D. doi:10.1126/science.aaf2649. ISSN 0036-8075. PMID 27789796. S2CID 9426269. http://eprints.whiterose.ac.uk/107269/1/Global%20atmospheric%20particle%20formation.pdf