Heeger's current research focuses on developing and testing a unified theory of cortical circuit function. The field of neuroscience needs a general theory of brain function, like Maxwell's Equations for the brain. There is considerable evidence that the brain relies on a set of canonical neural circuits that perform a set of canonical neural computations, repeating them across brain regions and modalities to apply operations of the same form. But we lack a theoretical framework for how such canonical computations can support a wide variety of cognitive processes and brain functions. Heeger developed a class of circuit models, called Oscillatory Recurrent Gated Neural Integrator Circuits (ORGaNICs), that recapitulate many key neurophysiological and cognitive/perceptual phenomena including sensory processing and attention in visual cortex, working memory in prefrontal and parietal cortex, and premotor activity and motor control in motor cortex. The theory offers a unified framework for the dynamics of neural activity, and it recapitulates many key neurophysiological and cognitive/perceptual phenomena (including normalization, oscillatory activity, sustained delay-period activity, sequential activity and traveling waves of activity), measured with a wide range of methodologies (including intracellular recordings of membrane potential fluctuations, firing rates of individual neurons, optogenetic manipulations, local field potentials, neuroimaging, and behavioral performance).
Heeger holds a bachelor's degree in mathematics as well as a master's degree and doctorate in computer science—all from the University of Pennsylvania. He was a postdoctoral fellow at MIT, a research scientist at the NASA-Ames Research Center, and an associate professor at Stanford before joining NYU.
Carandini, M. and D.J. Heeger, Normalization as a canonical neural computation. Nat Rev Neurosci, 2012. 13(1): p. 51-62.
Heeger, D.J., Normalization of cell responses in cat striate cortex. Vis Neurosci, 1992. 9(2): p. 181-197.
Gardner, J.L., et al., Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci, 2008. 28(15): p. 3988-99.
Larsson, J. and D.J. Heeger, Two retinotopic visual areas in human lateral occipital cortex. J Neurosci, 2006. 26(51): p. 13128-42.
Schluppeck, D., P. Glimcher, and D.J. Heeger, Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol, 2005. 94(2): p. 1372-84.
Silver, M.A., D. Ress, and D.J. Heeger, Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol, 2005. 94(2): p. 1358-71.
Huk, A.C., R.F. Dougherty, and D.J. Heeger, Retinotopy and functional subdivision of human areas MT and MST. J Neurosci, 2002. 22(16): p. 7195-7205.
Polonsky, A., et al., Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci, 2000. 3(11): p. 1153-9.
Lee, S.H., R. Blake, and D.J. Heeger, Traveling waves of activity in primary visual cortex during binocular rivalry. Nat Neurosci, 2005. 8(1): p. 22-3.
Lee, S.H., R. Blake, and D.J. Heeger, Hierarchy of cortical responses underlying binocular rivalry. Nat Neurosci, 2007. 10(8): p. 1048-54.
Ress, D. and D.J. Heeger, Neuronal correlates of perception in early visual cortex. Nat Neurosci, 2003. 10: p. 10.
Boynton, G.M., et al., Neuronal basis of contrast discrimination. Vision Res, 1999. 39(2): p. 257-69.
Huk, A.C., D. Ress, and D.J. Heeger, Neuronal basis of the motion aftereffect reconsidered. Neuron, 2001. 32(1): p. 161-72.
Huk, A.C. and D.J. Heeger, Pattern-motion responses in human visual cortex. Nat Neurosci, 2002. 5(1): p. 72-5.
Heeger, D.J., et al., Motion opponency in visual cortex. J Neurosci, 1999. 19(16): p. 7162-74.
Backus, B.T., et al., Human cortical activity correlates with stereoscopic depth perception. J Neurophysiol, 2001. 86(4): p. 2054-68.
Reynolds, J.H. and D.J. Heeger, The normalization model of attention. Neuron, 2009. 61(2): p. 168-85.
Herrmann, K., et al., When size matters: attention affects performance by contrast or response gain. Nat Neurosci, 2010. 13(12): p. 1554-9.
Ress, D., B.T. Backus, and D.J. Heeger, Activity in primary visual cortex predicts performance in a visual detection task. Nat Neurosci, 2000. 3(9): p. 940-945.
Gandhi, S.P., D.J. Heeger, and G.M. Boynton, Spatial attention affects brain activity in human primary visual cortex. Proc Natl Acad Sci U S A, 1999. 96(6): p. 3314-9.
Hasson, U., et al., A hierarchy of temporal receptive windows in human cortex. J Neurosci, 2008. 28(10): p. 2539-50.
Hasson, U., R. Malach, and D.J. Heeger, Reliability of cortical activity during natural stimulation. Trends Cogn Sci, 2010. 14(1): p. 40-8.
Demb, J.B., G.M. Boynton, and D.J. Heeger, Brain activity in visual cortex predicts individual differences in reading performance. Proc Natl Acad Sci U S A, 1997. 94(24): p. 13363-6.
Demb, J.B., G.M. Boynton, and D.J. Heeger, Functional magnetic resonance imaging of early visual pathways in dyslexia. J Neurosci, 1998. 18(17): p. 6939-51.
Dinstein, I., et al., A mirror up to nature. Curr Biol, 2008. 18(1): p. R13-8.
Dinstein, I., et al., Normal movement selectivity in autism. Neuron, 2010. 66(3): p. 461-9.
Dinstein, I., et al., Unreliable evoked responses in autism. Neuron, 2012. 75(6): p. 981-91.
Simoncelli, E.P., et al., Shiftable multi-scale transforms. IEEE Transactions on Information Theory, Special Issue on Wavelets, 1992. 38: p. 587-607.
Black, M., et al., Robust anisotropic diffusion. IEEE Transactions on Image Processing, 1998. 7: p. 421-432.
Heeger, D.J. and J.R. Bergen. Pyramid-Based Texture Analysis/Synthesis. in Computer Graphics, SIGGRAPH Proceedings. 1995.
Heeger, David J. (2017-02-21). "Theory of cortical function". Proceedings of the National Academy of Sciences of the United States of America. 114 (8): 1773–1782. Bibcode:2017PNAS..114.1773H. doi:10.1073/pnas.1619788114. ISSN 1091-6490. PMC 5338385. PMID 28167793. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338385
Heeger, David J.; Mackey, Wayne E. (2019-11-05). "Oscillatory recurrent gated neural integrator circuits (ORGaNICs), a unifying theoretical framework for neural dynamics". Proceedings of the National Academy of Sciences of the United States of America. 116 (45): 22783–22794. Bibcode:2019PNAS..11622783H. doi:10.1073/pnas.1911633116. ISSN 1091-6490. PMC 6842604. PMID 31636212. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842604
Heeger, David J.; Zemlianova, Klavdia O. (2020-09-08). "A recurrent circuit implements normalization, simulating the dynamics of V1 activity". Proceedings of the National Academy of Sciences of the United States of America. 117 (36): 22494–22505. Bibcode:2020PNAS..11722494H. doi:10.1073/pnas.2005417117. ISSN 1091-6490. PMC 7486719. PMID 32843341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486719
"The Nobel Prize in Chemistry 2000". NobelPrize.org. Retrieved 2024-12-23. https://www.nobelprize.org/prizes/chemistry/2000/summary/