A Dec-POMDP is a 7-tuple ( S , { A i } , T , R , { Ω i } , O , γ ) {\displaystyle (S,\{A_{i}\},T,R,\{\Omega _{i}\},O,\gamma )} , where
At each time step, each agent takes an action a i ∈ A i {\displaystyle a_{i}\in A_{i}} , the state updates based on the transition function T ( s , a , s ′ ) {\displaystyle T(s,a,s')} (using the current state and the joint action), each agent observes an observation based on the observation function O ( s ′ , a , o ) {\displaystyle O(s',a,o)} (using the next state and the joint action) and a reward is generated for the whole team based on the reward function R ( s , a ) {\displaystyle R(s,a)} . The goal is to maximize expected cumulative reward over a finite or infinite number of steps. These time steps repeat until some given horizon (called finite horizon) or forever (called infinite horizon). The discount factor γ {\displaystyle \gamma } maintains a finite sum in the infinite-horizon case ( γ ∈ [ 0 , 1 ) {\displaystyle \gamma \in [0,1)} ).
Bernstein, Daniel S.; Givan, Robert; Immerman, Neil; Zilberstein, Shlomo (November 2002). "The Complexity of Decentralized Control of Markov Decision Processes". Mathematics of Operations Research. 27 (4): 819–840. arXiv:1301.3836. doi:10.1287/moor.27.4.819.297. ISSN 0364-765X. S2CID 1195261. /wiki/Mathematics_of_Operations_Research ↩
Oliehoek, Frans A.; Amato, Christopher (2016). A Concise Introduction to Decentralized POMDPs | SpringerLink (PDF). SpringerBriefs in Intelligent Systems. doi:10.1007/978-3-319-28929-8. ISBN 978-3-319-28927-4. S2CID 3263887. 978-3-319-28927-4 ↩
Oliehoek, Frans A.; Amato, Christopher (2016-06-03). A Concise Introduction to Decentralized POMDPs. Springer. ISBN 978-3-319-28929-8. 978-3-319-28929-8 ↩