The composer can also be used in scripting mode, where the user can write programs in the OpenQASM-language instead. Below is an example of a very small program, built for IBMs 5-qubit computer. The program instructs the computer to generate a quantum state
|
Ψ
⟩
=
1
2
(
|
000
⟩
+
|
111
⟩
)
{\displaystyle |\Psi \rangle ={\frac {1}{\sqrt {2}}}\left(|000\rangle +|111\rangle \right)}
, a 3-qubit GHZ state, which can be thought of as a variant of the Bell state, but with three qubits instead of two. It then measures the state, forcing it to collapse to one of the two possible outcomes,
|
000
⟩
{\displaystyle |000\rangle }
or
|
111
⟩
{\displaystyle |111\rangle }
.
include "qelib1.inc"
qreg q[5]; // allocate 5 qubits (set automatically to |00000>)
creg c[5]; // allocate 5 classical bits
h q[0]; // Hadamard-transform qubit 0
cx q[0], q[1]; // conditional pauli X-transform (ie. "CNOT") of qubits 0 and 1
// At this point we have a 2-qubit Bell state (|00> + |11>)/sqrt(2)
cx q[1], q[2]; // this expands entanglement to the 3rd qubit
measure q[0] -> c[0]; // this measurement collapses the entire 3-qubit state
measure q[1] -> c[1]; // therefore qubit 1 and 2 read the same value as qubit 0
measure q[2] -> c[2];
"IBM Makes Quantum Computing Available on IBM Cloud to Accelerate Innovation". 2016-05-04. Archived from the original on May 4, 2016. https://web.archive.org/web/20160504214945/http://www-03.ibm.com/press/us/en/pressrelease/49661.wss
"IBM Quantum Experience Update". Archived from the original on 2019-01-29. Retrieved 2017-04-06. https://web.archive.org/web/20190129182024/https://quantumexperience.ng.bluemix.net/qstage/#/community/question?questionId=c7a17f4183104ea22ff8e3e8a95f794c
"Quantum computing gets an API and SDK". 2017-03-06. https://developer.ibm.com/dwblog/2017/quantum-computing-api-sdk-david-lubensky/
"Beta access our upgrade to the IBM QX". Archived from the original on 2019-01-31. Retrieved 2017-05-19. https://web.archive.org/web/20190131201233/https://quantumexperience.ng.bluemix.net/qx/community/question?questionId=db5f64ac99c6edc78e34932dfe593f36&channel=news
"Now Open: Get quantum ready with new scientific prizes for professors, students and developers". IBM. 2018-01-14. https://www.ibm.com/blogs/research/2018/01/quantum-prizes/
"IBM Unveils Beta of Next Generation Quantum Development Platform". IBM. 2021-02-10. https://www.ibm.com/blogs/research/2019/05/next-gen-ibmqx/
"Announcement of IBM Quantum Composer and Lab". 2021-03-02. https://twitter.com/jaygambetta/status/1366787131151163395
"IBM Quantum experience". Quantum Experience. IBM. Archived from the original on 25 May 2018. Retrieved 3 July 2017. https://web.archive.org/web/20180525063152/https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=59d2538efa783368715d988e06607b8c&pageIndex=0
"IBM Collaborating With Top Startups to Accelerate Quantum Computing". IBM. 2018-04-05. https://www.ibm.com/blogs/research/2018/04/ibm-startups-accelerate-quantum/
"QX Community papers". Archived from the original on 2019-03-22. Retrieved 2018-05-24. https://web.archive.org/web/20190322211226/https://quantumexperience.ng.bluemix.net/qx/community?channel=papers
"Research of the IBM Quantum Hub at the University of Melbourne". 20 April 2021. https://www.unimelb.edu.au/quantumhub#research
Rundle, R. P.; Tilma, T.; Samson, J. H.; Everitt, M. J. (2017). "Quantum state reconstruction made easy: a direct method for tomography". Physical Review A. 96 (2): 022117. arXiv:1605.08922. Bibcode:2017PhRvA..96b2117R. doi:10.1103/PhysRevA.96.022117. /wiki/ArXiv_(identifier)
Corbett Moran, Christine (29 June 2016). "Quintuple: a Python 5-qubit quantum computer simulator to facilitate cloud quantum computing". arXiv:1606.09225 [quant-ph]. /wiki/ArXiv_(identifier)
Huffman, Emilie; Mizel, Ari (29 March 2017). "Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett-Garg test that addresses the clumsiness loophole". Physical Review A. 95 (3): 032131. arXiv:1609.05957. Bibcode:2017PhRvA..95c2131H. doi:10.1103/PhysRevA.95.032131. /wiki/ArXiv_(identifier)
Deffner, Sebastian (23 September 2016). "Demonstration of entanglement assisted invariance on IBM's Quantum Experience". Heliyon. 3 (11): e00444. arXiv:1609.07459. doi:10.1016/j.heliyon.2017.e00444. PMC 5683883. PMID 29159322. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683883
Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su (9 December 2016). "Homomorphic Encryption Experiments on IBM's Cloud Quantum Computing Platform". Frontiers of Physics. 12 (1): 120305. arXiv:1612.02886. Bibcode:2017FrPhy..12l0305H. doi:10.1007/s11467-016-0643-9. S2CID 17770053. /wiki/ArXiv_(identifier)
Wootton, James R (1 March 2017). "Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment". Quantum Science and Technology. 2 (1): 015006. arXiv:1609.07774. Bibcode:2017QS&T....2a5006W. doi:10.1088/2058-9565/aa5c73. S2CID 44370109. /wiki/ArXiv_(identifier)
Fedortchenko, Serguei (8 July 2016). "A quantum teleportation experiment for undergraduate students". arXiv:1607.02398 [quant-ph]. /wiki/ArXiv_(identifier)
Berta, Mario; Wehner, Stephanie; Wilde, Mark M (6 July 2016). "Entropic uncertainty and measurement reversibility". New Journal of Physics. 18 (7): 073004. arXiv:1511.00267. Bibcode:2016NJPh...18g3004B. doi:10.1088/1367-2630/18/7/073004. S2CID 119186679. /wiki/ArXiv_(identifier)
Li, Rui; Alvarez-Rodriguez, Unai; Lamata, Lucas; Solano, Enrique (23 November 2016). "Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience". Quantum Measurements and Quantum Metrology. 4 (1): 1–7. arXiv:1611.07851. Bibcode:2017QMQM....4....1L. doi:10.1515/qmetro-2017-0001. S2CID 108291239. /wiki/ArXiv_(identifier)
Hebenstreit, M.; Alsina, D.; Latorre, J. I.; Kraus, B. (11 January 2017). "Compressed quantum computation using the IBM Quantum Experience". Phys. Rev. A. 95 (5): 052339. arXiv:1701.02970. doi:10.1103/PhysRevA.95.052339. S2CID 118958024. /wiki/Barbara_Kraus
Alsina, Daniel; Latorre, José Ignacio (11 July 2016). "Experimental test of Mermin inequalities on a five-qubit quantum computer". Physical Review A. 94 (1): 012314. arXiv:1605.04220. Bibcode:2016PhRvA..94a2314A. doi:10.1103/PhysRevA.94.012314. S2CID 119189277. /wiki/ArXiv_(identifier)
Linke, Norbert M.; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A.; Wright, Kenneth; Monroe, Christopher (28 March 2017). "Experimental comparison of two quantum computing architectures". Proceedings of the National Academy of Sciences. 114 (13): 3305–3310. arXiv:1702.01852. Bibcode:2017PNAS..114.3305L. doi:10.1073/pnas.1618020114. PMC 5380037. PMID 28325879. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380037
Devitt, Simon J. (29 September 2016). "Performing quantum computing experiments in the cloud". Physical Review A. 94 (3): 032329. arXiv:1605.05709. Bibcode:2016PhRvA..94c2329D. doi:10.1103/PhysRevA.94.032329. S2CID 119217150. /wiki/ArXiv_(identifier)
Steiger, Damian; Haner, Thomas; Troyer, Matthias (2018). "ProjectQ: An Open Source Software Framework for Quantum Computing". Quantum. 2: 49. arXiv:1612.08091. Bibcode:2018Quant...2...49S. doi:10.22331/q-2018-01-31-49. S2CID 6758479. /wiki/ArXiv_(identifier)
Santos, Alan C. (2017). "O Computador Quântico da IBM e o IBM Quantum Experience". Revista Brasileira de Ensino de Física. 39 (1). arXiv:1610.06980. doi:10.1590/1806-9126-RBEF-2016-0155. /wiki/ArXiv_(identifier)
Caicedo-Ortiz, H. E.; Santiago-Cortés, E. (2017). "Construyendo compuertas cuánticas con IBM's cloud quantum computer" [Building quantum gates with IBM’s cloud quantum computer] (PDF). Journal de Ciencia e Ingeniería (in Spanish). 9: 42–56. doi:10.46571/JCI.2017.1.7. http://jci.uniautonoma.edu.co/2017/2017-7.pdf