Opmonoidal monads have been studied under various names. Ieke Moerdijk introduced them as "Hopf monads",1 while in works of Bruguières and Virelizier they are called "bimonads", by analogy to "bialgebra",2 reserving the term "Hopf monad" for opmonoidal monads with an antipode, in analogy to "Hopf algebras".
An opmonoidal monad is a monad ( T , η , μ ) {\displaystyle (T,\eta ,\mu )} in the 2-category of O p M o n C a t {\displaystyle {\mathsf {OpMonCat}}} monoidal categories, oplax monoidal functors and monoidal natural transformations. That means a monad ( T , η , μ ) {\displaystyle (T,\eta ,\mu )} on a monoidal category ( C , ⊗ , I ) {\displaystyle (C,\otimes ,I)} together with coherence maps T A , B : T ( A ⊗ B ) → T A ⊗ T B {\displaystyle T^{A,B}:T(A\otimes B)\to TA\otimes TB} and T 0 : T I → I {\displaystyle T^{0}:TI\to I} satisfying three axioms that make an opmonoidal functor, and four more axioms that make the unit η {\displaystyle \eta } and the multiplication μ {\displaystyle \mu } into opmonoidal natural transformations. Alternatively, an opmonoidal monad is a monad on a monoidal category such that the category of Eilenberg-Moore algebras has a monoidal structure for which the forgetful functor is strong monoidal.34
An easy example for the monoidal category Vect {\displaystyle \operatorname {Vect} } of vector spaces is the monad − ⊗ A {\displaystyle -\otimes A} , where A {\displaystyle A} is a bialgebra.5 The multiplication and unit of A {\displaystyle A} define the multiplication and unit of the monad, while the comultiplication and counit of A {\displaystyle A} give rise to the opmonoidal structure. The algebras of this monad are right A {\displaystyle A} -modules, which one may tensor in the same way as their underlying vector spaces.
The following monads on the category of sets, with its cartesian monoidal structure, are monoidal monads:
The following monads on the category of sets, with its cartesian monoidal structure, are not monoidal monads
Moerdijk, Ieke (23 March 2002). "Monads on tensor categories". Journal of Pure and Applied Algebra. 168 (2–3): 189–208. doi:10.1016/S0022-4049(01)00096-2. https://doi.org/10.1016%2FS0022-4049%2801%2900096-2 ↩
Bruguières, Alain; Alexis Virelizier (2007). "Hopf monads". Advances in Mathematics. 215 (2): 679–733. doi:10.1016/j.aim.2007.04.011. https://doi.org/10.1016%2Fj.aim.2007.04.011 ↩
McCrudden, Paddy (2002). "Opmonoidal monads". Theory and Applications of Categories. 10 (19): 469–485. CiteSeerX 10.1.1.13.4385. http://www.tac.mta.ca/tac/volumes/10/19/10-19abs.html ↩
Zawadowski, Marek (2011). "The Formal Theory of Monoidal Monads The Kleisli and Eilenberg-Moore objects". Journal of Pure and Applied Algebra. 216 (8–9): 1932–1942. arXiv:1012.0547. doi:10.1016/j.jpaa.2012.02.030. S2CID 119301321. /wiki/ArXiv_(identifier) ↩