The Type I cumulative distribution function is usually represented as a Poisson mixture of central beta random variables:3
where λ is the noncentrality parameter, P(.) is the Poisson(λ/2) probability mass function, \alpha=m/2 and \beta=n/2 are shape parameters, and I x ( a , b ) {\displaystyle I_{x}(a,b)} is the incomplete beta function. That is,
The Type II cumulative distribution function in mixture form is
Algorithms for evaluating the noncentral beta distribution functions are given by Posten4 and Chattamvelli.5
The (Type I) probability density function for the noncentral beta distribution is:
where B {\displaystyle B} is the beta function, α {\displaystyle \alpha } and β {\displaystyle \beta } are the shape parameters, and λ {\displaystyle \lambda } is the noncentrality parameter. The density of Y is the same as that of 1-X with the degrees of freedom reversed.6
If X ∼ Beta ( α , β , λ ) {\displaystyle X\sim {\mbox{Beta}}\left(\alpha ,\beta ,\lambda \right)} , then β X α ( 1 − X ) {\displaystyle {\frac {\beta X}{\alpha (1-X)}}} follows a noncentral F-distribution with 2 α , 2 β {\displaystyle 2\alpha ,2\beta } degrees of freedom, and non-centrality parameter λ {\displaystyle \lambda } .
If X {\displaystyle X} follows a noncentral F-distribution F μ 1 , μ 2 ( λ ) {\displaystyle F_{\mu _{1},\mu _{2}}\left(\lambda \right)} with μ 1 {\displaystyle \mu _{1}} numerator degrees of freedom and μ 2 {\displaystyle \mu _{2}} denominator degrees of freedom, then
follows a noncentral Beta distribution:
This is derived from making a straightforward transformation.
When λ = 0 {\displaystyle \lambda =0} , the noncentral beta distribution is equivalent to the (central) beta distribution.
Chattamvelli, R. (1995). "A Note on the Noncentral Beta Distribution Function". The American Statistician. 49 (2): 231–234. doi:10.1080/00031305.1995.10476151. /wiki/Doi_(identifier) ↩
Posten, H.O. (1993). "An Effective Algorithm for the Noncentral Beta Distribution Function". The American Statistician. 47 (2): 129–131. doi:10.1080/00031305.1993.10475957. JSTOR 2685195. /wiki/Doi_(identifier) ↩