The set of all such indicator functions, { 1 r } r ∈ R {\displaystyle \{\mathbf {1} _{r}\}_{r\in \mathbb {R} }} , is an uncountable set indexed by R {\displaystyle \mathbb {R} } .
In computational complexity theory and cryptography, an index set is a set for which there exists an algorithm I that can sample the set efficiently; e.g., on input 1n, I can efficiently select a poly(n)-bit long element from the set.3
Weisstein, Eric. "Index Set". Wolfram MathWorld. Wolfram Research. Retrieved 30 December 2013. http://mathworld.wolfram.com/IndexSet.html ↩
Munkres, James R. (2000). Topology. Vol. 2. Upper Saddle River: Prentice Hall. ↩
Goldreich, Oded (2001). Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press. ISBN 0-521-79172-3. 0-521-79172-3 ↩