For trees, a concise polynomial canonization algorithm requiring O(n) space is presented by Read (1972). Begin by labeling each vertex with the string 01. Iteratively for each non-leaf x remove the leading 0 and trailing 1 from x's label; then sort x's label along with the labels of all adjacent leaves in lexicographic order. Concatenate these sorted labels, add back a leading 0 and trailing 1, make this the new label of x, and delete the adjacent leaves. If there are two vertices remaining, concatenate their labels in lexicographic order.
Graph canonization is the essence of many graph isomorphism algorithms. One of the leading tools is Nauty.
Arvind, Vikraman; Das, Bireswar; Köbler, Johannes (2008), "A logspace algorithm for partial 2-tree canonization", Computer Science – Theory and Applications: Third International Computer Science Symposium in Russia, CSR 2008 Moscow, Russia, June 7-12, 2008, Proceedings, Lecture Notes in Comput. Sci., vol. 5010, Springer, Berlin, pp. 40–51, doi:10.1007/978-3-540-79709-8_8, ISBN 978-3-540-79708-1, MR 2475148. 978-3-540-79708-1
Arvind, V.; Das, Bireswar; Köbler, Johannes (2007), "The space complexity of k-tree isomorphism", Algorithms and Computation: 18th International Symposium, ISAAC 2007, Sendai, Japan, December 17-19, 2007, Proceedings, Lecture Notes in Comput. Sci., vol. 4835, Springer, Berlin, pp. 822–833, doi:10.1007/978-3-540-77120-3_71, ISBN 978-3-540-77118-0, MR 2472661. 978-3-540-77118-0
Gurevich, Yuri (1997), "From invariants to canonization" (PDF), Bulletin of the European Association for Theoretical Computer Science (63): 115–119, MR 1621595. http://research.microsoft.com/en-us/um/people/gurevich/opera/131.pdf
Babai, László; Luks, Eugene (1983), "Canonical labeling of graphs", Proc. 15th ACM Symposium on Theory of Computing, pp. 171–183, doi:10.1145/800061.808746, ISBN 0-89791-099-0. 0-89791-099-0
Arvind, V.; Das, Bireswar; Köbler, Johannes (2007), "The space complexity of k-tree isomorphism", Algorithms and Computation: 18th International Symposium, ISAAC 2007, Sendai, Japan, December 17-19, 2007, Proceedings, Lecture Notes in Comput. Sci., vol. 4835, Springer, Berlin, pp. 822–833, doi:10.1007/978-3-540-77120-3_71, ISBN 978-3-540-77118-0, MR 2472661. 978-3-540-77118-0
Babai, László (June 23, 2019), Canonical Form for Graphs in Quasipolynomial Time https://par.nsf.gov/servlets/purl/10179675
Babai, László (1977), On the Isomorphism Problem, unpublished manuscript. /wiki/L%C3%A1szl%C3%B3_Babai
Babai, László; Kucera, L. (1979), "Canonical labeling of graphs in linear average time", Proc. 20th Annual IEEE Symposium on Foundations of Computer Science, pp. 39–46, doi:10.1109/SFCS.1979.8, S2CID 14697933. /wiki/L%C3%A1szl%C3%B3_Babai
Babai, László; Luks, E. (1983), "Canonical labeling of graphs", Proc. 15th ACM Symposium on Theory of Computing, pp. 171–183 /wiki/L%C3%A1szl%C3%B3_Babai
Read, Ronald C. (1972), "The coding of various kinds of unlabeled trees", Graph Theory and Computing, Academic Press, New York, pp. 153–182, MR 0344150. /wiki/MR_(identifier)
McKay, Brendan D.; Piperno, Adolfo (2014), "Journal of Symbolic Computation", Practical graph isomorphism, II, vol. 60, pp. 94–112, arXiv:1301.1493, doi:10.1016/j.jsc.2013.09.003, ISSN 0747-7171, S2CID 17930927. http://pallini.di.uniroma1.it
Cook, Diane J.; Holder, Lawrence B. (2007), "6.2.1. Canonical Labeling", Mining Graph Data, John Wiley & Sons, pp. 120–122, ISBN 978-0-470-07303-2. 978-0-470-07303-2
Weininger, David; Weininger, Arthur; Weininger, Joseph L. (May 1989). "SMILES. 2. Algorithm for generation of unique SMILES notation". Journal of Chemical Information and Modeling. 29 (2): 97–101. doi:10.1021/ci00062a008. S2CID 6621315. /wiki/Doi_(identifier)
Kelley, Brian (May 2003). "Graph Canonicalization". Dr. Dobb's Journal. http://www.drdobbs.com/graph-canonicalization/184405341
Scheider, Nadine; Sayle, Roger A.; Landrum, Gregory A. (October 2015). "Get Your Atoms in Order — An Open-Source Implementation of a Novel and Robust Molecular Canonicalization Algorithm". Journal of Chemical Information and Modeling. 55 (10): 2111–2120. doi:10.1021/acs.jcim.5b00543. PMID 26441310. /wiki/Doi_(identifier)