In a system where particles can have either a state of energy 0 or ϵ {\displaystyle \epsilon } , the expected value of the energy of a particle in the canonical ensemble is:
⟨ ϵ ⟩ = ϵ ⋅ e − β ϵ 1 + e − β ϵ = ϵ e + β ϵ + 1 {\displaystyle \langle \epsilon \rangle =\epsilon \cdot {\frac {e^{-\beta \epsilon }}{1+e^{-\beta \epsilon }}}={\frac {\epsilon }{e^{+\beta \epsilon }+1}}}
with the inverse temperature β = 1 k B T {\displaystyle \beta ={\frac {1}{k_{\mathrm {B} }T}}} and the Boltzmann constant k B {\displaystyle k_{\mathrm {B} }} .
The total energy of N {\displaystyle N} independent particles is thus:
U = N ⟨ ϵ ⟩ = N ϵ e + β ϵ + 1 {\displaystyle U=N\langle \epsilon \rangle ={\frac {N\epsilon }{e^{+\beta \epsilon }+1}}}
The heat capacity is therefore:
C = ( ∂ U ∂ T ) ϵ = − 1 k B T 2 ∂ U ∂ β = N k B ( ϵ k B T ) 2 e + ϵ k B T ( e + ϵ k B T + 1 ) 2 {\displaystyle C=\left({\frac {\partial U}{\partial T}}\right)_{\epsilon }=-{\frac {1}{k_{\mathrm {B} }T^{2}}}{\frac {\partial U}{\partial \beta }}=Nk_{\mathrm {B} }\left({\frac {\epsilon }{k_{\mathrm {B} }T}}\right)^{2}{\frac {e^{+{\frac {\epsilon }{k_{\mathrm {B} }T}}}}{\left(e^{+{\frac {\epsilon }{k_{\mathrm {B} }T}}}+1\right)^{2}}}}
Plotting C {\displaystyle C} as a function of temperature, a peak can be seen at k B T ≈ 0.417 ϵ {\displaystyle k_{\mathrm {B} }T\approx 0.417\epsilon } . In this section ϵ k B = Δ {\displaystyle {\frac {\epsilon }{k_{\mathrm {B} }}}=\Delta } for the Δ {\displaystyle \Delta } in the introductory section.
Tari, A: The Specific Heat of Matter at Low Temperatures, page 250. Imperial College Press, 2003. ↩