CI chondrites contain significant amounts of carbon, ranging from approximately 3-5 wt%, primarily in organic form. Analysis of the Ivuna meteorite revealed a total carbon concentration of 3.31 wt%, with about 90% being organic carbon. While this represents the highest carbon content among carbonaceous chondrites, it is surpassed by some Ureilites, which can contain even greater carbon concentrations.
Oxygen is the most abundant element in CI chondrites (46 wt%.), with a distinctive isotopic composition that serves as a crucial identifier. CI chondrites contain three stable oxygen isotopes (16O, 17O, and 18O) that, when plotted on a three-isotope diagram, occupy a specific field clearly distinguishable from other meteorite groups. They show significant enrichment in 18O and moderate enrichment in 17O compared to petrologically similar CM chondrites, with no overlap between these groups. Antarctic CI-like meteorites exhibit even greater 18O enrichment, representing the macroscopic samples with the heaviest oxygen isotopic composition in the Solar System—a signature that provides essential insights into their unique formation conditions.
Iron is present with 18-20 wt%. This is a marginally higher level than CM chondrites, as iron is somewhat cooler-forming than magnesium. The siderophiles nickel and cobalt follow iron as well. The majority of the iron is in the form of cations in the phyllosilicates and iron bound as magnetite. Some appears as ferrihydrite, but not in Ivuna.
Magnetite is the second most abundant mineral in CI chondrites. It occurs in various morphologies, including crystals, spheres, framboids (raspberry-like clusters), and plaquettes (stacked or beehive-like structures), which are distinctive to CIs. The mineral formed through the oxidation of sulfides, primarily pyrrhotite and its nickel-rich variants, likely occurring in multiple generations. Other minerals found include iron sulfides like pyrrhotite, pentlandite, troilite and cubanite. The matrix also hosts isolated ferromagnesian silicates, such as olivine (forsterite with fayalite Fa10–20), clinopyroxene, and orthopyroxene, which crystallized at high temperatures and remain unaltered. Water-bearing, clay-rich phyllosilicates, including montmorillonite and serpentine-like minerals, are among the main constituents. Additionally, alteration minerals such as epsomite (found in microscopic veins), vaterite, carbonates, and sulfates are present.
The majority of the carbon in CI chondrites (> 70%) exists as insoluble organic matter (IOM), a kerogen-like macromolecule comprising of highly cross-linked aromatic network with aliphatic linkages, heterocyclic compounds, and various functional groups. The soluble organic matter (the remaining < 30% portion) includes various compounds such as aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), alcohols, and carbonyl compounds.
CI chondrites stand apart from all other meteorite groups due to their extensive aqueous alteration, which minimal (< 0.1wt%) visible chondrules and calcium-aluminum-rich inclusions (CAIs), and no reported amoeboid olivine aggregates (AOAs). Despite this alteration, they paradoxically maintain the closest match to solar abundances for non-volatile elements while containing higher volatile concentrations than most meteorites.
This unique composition is reflected in their elemental ratios—CI chondrites exhibit a relatively high Mg/Si ratio (1.07), exceeded only by CV chondrites, alongside the lowest Ca/Si ratio (0.057) among all carbonaceous chondrites. Their oxygen isotope values reach the highest levels in the carbonaceous chondrite family, with ratios comparable to terrestrial values.
When compared to CM chondrites, CI chondrites show evidence of more extensive aqueous alteration. CM chondrites preserve some original chondrules and calcium-aluminum-rich inclusions despite containing up to 70% phyllosilicates. CI chondrites, by contrast, consist of over 95% phyllosilicate matrix with virtually no recognizable primordial features. The mineral assemblages in these groups are distinctly different: CM chondrites contain abundant tochilinite-cronstedtite intergrowths with Fe-Ni sulfides, while CI chondrites are characterized by magnesium-rich serpentine and saponite (smectite) minerals, along with significant amounts of magnetite, carbonates, and sulfates. These mineralogical differences reflect varying water-to-rock ratios and alteration temperatures during parent body processing.
CI chondrites formed forming within the first few million years of the Solar System history in volatile-rich regions of the solar nebula, likely beyond the snow line (> 4 AU from the Sun) where temperatures around 160K allowed water ice preservation. This formation location explains their higher concentrations of carbonaceous and volatile-rich materials compared to other chondrite groups. This is supported by the similarity of CI chondrites with the icy moons of the outer Solar System. Furthermore, there seems to exist a connection to comets: like the comets, CI chondrites accreted silicates, ice and other volatiles, as well as organic compounds (example: Comet Halley).
Although classified as Type 1 chondrites (lacking recognizable chondrules), CIs do contain rare chondrule fragments, anhydrous minerals, and CAIs (less than 1% by volume). Oxygen isotopic compositions of these minerals support their origin as relics of chondrules and refractory inclusions. Before aqueous alteration, CIs likely consisted primarily of chondrules, refractory inclusions, opaque minerals, and anhydrous matrix.
After formation, CI parent bodies experienced heating that melted ice to create liquid water. This water reacted with primary minerals at temperatures of 50-150 °C, converting them to hydrated phyllosilicates over approximately 15 million years. The alteration occurred in environments with high water/rock ratios (> 0.6-1.2) and neutral to alkaline pH (7-10).
Liquid water must have penetrated the parent body through cracks and fissures and then deposited the water-bearing phases. This process transformed nearly all anhydrous precursor materials into secondary phases. Different CI chondrites show varying alteration levels: Orgueil (containing fine-grained phyllosilicates, ferrihydrite, and corroded magnetite/sulfide grains) represents the most altered, while Ivuna (lacking ferrihydrite) shows less alteration.
Despite this extensive alteration, CI chondrites paradoxically retain the most primitive element abundances. This suggests that either mineral transport during alteration remained limited to mm- to cm-scales, or that the parent body was so thoroughly fluidized that its materials were homogenized—creating a closed system. The debate continues over whether this alteration occurred in free-floating particles before accretion (the nebular hypothesis) or within the parent asteroid (the parent body hypothesis), with the presence of veins and diverse magnetite morphologies suggesting multiple episodes of aqueous activity.
Furthermore, several lines of evidence suggest that the Orgueil meteorite, the most studied CI chondrite, may have originated from a comet fragment or extinct cometary nucleus. This hypothesis is supported by Orgueil's high water-to-rock ratio, abundance of hydrated minerals, distinctive oxygen isotopes, and deuterium/hydrogen ratios similar to those measured in Comet Hartley 2. Further evidence comes from reconstructed orbital and atmospheric trajectory analyses of the Orgueil fall. The dwarf planet Ceres has also been proposed as a possible CI parent body, though definitive evidence remains elusive.
While some researchers argue against cometary origins for CI chondrites, these arguments are often based on philosophical positions or circumstantial evidence. Space missions have significantly altered our understanding of comets, particularly the Stardust mission to Comet Wild 2, which returned material with surprisingly asteroidal characteristics. This finding suggests that the boundary between asteroids and comets may be less distinct than previously thought, with considerable mixing between these populations in the early solar system. The possibility that CI chondrites are comet samples is still being postulated.
Generally considered the most altered CI chondrite, Orgueil became controversial in the 1960s when researchers reported "organized elements" initially proposed as possible microfossils, though later work revealed these were likely mineral structures or terrestrial contamination.
Orgueil displays several distinct chemical signatures, including a high L-isovaline enantiomeric excess (approximately 19%)—significantly higher than in unaltered chondrites. Its amino acid concentration (71 nmol/g) and distribution (predominantly beta-alanine) differ markedly from the complex alpha-amino acids found in CM2 meteorites.
Among CI chondrites, Ivuna represents the least altered specimen, lacking the ferrihydrite found in Alais and Orgueil. Its composition includes 3.31 wt% total carbon (90% organic), 1.59 wt% hydrogen (89% inorganic), and 12.73 wt% total water. Recent oxygen isotope studies of its dolomite and magnetite grains suggest these minerals may have precipitated from the same fluid as similar components in samples from asteroid Ryugu.
The Revelstoke CI chondrite fall was in 1965, notable for its very bright fall in Revelstoke, British Columbia. It yielded only two tiny fragments, totaling ~1 gram (>0.03 oz).
Antarctica has been a significant source of meteorites, including specimens that exhibit similarities to CI chondrites. The first such finds, Yamato 82042 and Y-82162, were discovered in the Yamato Mountains. These meteorites share many characteristics with CI chondrites but also exhibit notable differences. Y-82162 and Y-86029, for instance, contain less water and have bulk oxygen isotopic compositions shifted to higher values, suggesting significant water loss from phyllosilicates due to thermal metamorphism.
In 1992, Ikeda proposed that these Antarctic meteorites, which differ somewhat from non-Antarctic CI chondrites, should be classified as a distinct grouplet. By 2015, the list of CI-like specimens had expanded to include Yamato 86029 (11.8 g), Y-86720, Y-86737 (2.81 g), Y-86789, Y-980115 (772 g), Y-980134 (12.2 g), Belgica 7904, and the desert chondrite Dhofar 1988. King et al. later proposed a separate classification for these meteorites, naming them CY chondrites. In 2023, MacLennan Gravik claimed (using mid-infrared spectroscopy) that asteroid (3200) Phaethon is the parent body of the CY chondrites, further supporting their distinction from CI chondrites.[undue weight? – discuss] This claim is countered by direct examination of the meteorites.
A key difference between Antarctic CI-like meteorites and CI chondrites is the alteration of phyllosilicates. In many Antarctic specimens, these minerals have undergone dehydration and reversion to silicates, accompanied by an increase in sulfide content. Unlike typical CI chondrites, where magnetite is more abundant, sulfides dominate in CY chondrites. Additionally, these meteorites exhibit the highest recorded oxygen isotope compositions among all meteorites.
Organic analysis of the Yamato chondrites has revealed significantly lower concentrations of amino acids (~3 nmol/g), approximately 25 times lower than in other CI chondrites. The amino acid composition is dominated by proteinogenic amino acids, suggesting terrestrial contamination. Furthermore, thermal history varies between Antarctic CI-like meteorites and traditional CI chondrites. While Ivuna and Orgueil likely never experienced temperatures above 150 °C, Y-86029 and Y-980115 have undergone heating up to 600 °C. The low abundance of γ- and δ-amino acids in the Yamato meteorites suggests that either minimal amino acid synthesis occurred on their parent bodies or that prolonged heating led to near-complete amino acid destruction.
Lastly, the meteorite find Oued Chebeika 002, recovered by locals in the Moroccan deserts, appears to be a CI chondrite. Although it was not an observed fall, the arid environment appears to have caused minimal alteration to the sample.
The defining feature of CI meteorites is their chemical composition, rich in volatile elements- richer than any other meteorites. The element assay of CI meteorite is used as a geochemical standard, as it has "a remarkably close relationship" to the makeup of the Sun and greater Solar System. This abundance standard is the measure by which other meteorites, comets, and in some cases the planets themselves (since revised) are assayed.
Issues with CI abundances include heterogeneity (local variation), and bromine and other halogens, which are water-soluble and thus labile. Volatiles, such as noble gases (though see below) and the atmophile elements carbon, nitrogen, oxygen, etc. are lost from minerals and not assumed to hold the Solar correspondence. However, in the modern era the Solar carbon and oxygen measurements have come down significantly. As these are the two most abundant elements after hydrogen and helium, the Sun's metallicity is affected significantly. It is possible that CI chondrites may hold too many volatiles, and the matrix of CM chondrites (excluding chondrules, calcium–aluminium-rich inclusions, etc.), or bulk Tagish Lake, may be a better proxy for the Solar abundance.
Due to their rarity and importance as geochemical references, there has been significant interest in classifying meteorites as CI chondrites. However, several meteorites once thought to be CI chondrites have later been reclassified.
Compared to all the meteorites found to date, CI chondrites possess the strongest similarity to the elemental distribution within the original solar nebula. For this reason they are also called primitive meteorites. Except for the volatile elements carbon, hydrogen, oxygen and nitrogen, as well as the noble gases, which are deficient in the CI chondrites, the elemental ratios are nearly identical. Lithium is another exception, it is enriched in the meteorites (lithium in the Sun is involved during nucleosynthesis and therefore diminished).
CI chondrites also have a high carbon content. Besides inorganic carbon compounds like graphite, diamond and carbonates, organic carbon compounds are represented. For instance, amino acids have been detected. This is a very important fact in the ongoing search for the origin of life.
Wasson, J. T. (1974). Meteorites-classification and properties. Berlin: Springer. ISBN 978-3-642-65865-5. 978-3-642-65865-5
Van Schmus, W. R.; Wood, J.A. (1967). "A chemical-petrologic classification for the chondritic meteorites". Geochim. Cosmochim. Acta. 31 (5): 74765. Bibcode:1967GeCoA..31..747V. doi:10.1016/S0016-7037(67)80030-9. /wiki/Bibcode_(identifier)
Pearson, V. K.; Sephton, M. A.; Franchi, I. A.; Gibson, J. M.; Gilmour, I. (26 January 2010). "Carbon and nitrogen in carbonaceous chondrites: Elemental abundances and stable isotopic compositions". Meteoritics & Planetary Science. 41 (12): 1899–1918. doi:10.1111/j.1945-5100.2006.tb00459.x. ISSN 1086-9379. https://doi.org/10.1111/j.1945-5100.2006.tb00459.x
Yokoyama, Tetsuya; Nagashima, Kazuhide; Nakai, Izumi; Young, Edward D.; Abe, Yoshinari; Aléon, Jérôme; Alexander, Conel M. O’D.; Amari, Sachiko; Amelin, Yuri; Bajo, Ken-ichi; Bizzarro, Martin; Bouvier, Audrey; Carlson, Richard W.; Chaussidon, Marc; Choi, Byeon-Gak (24 February 2023). "Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites". Science. 379 (6634): eabn7850. Bibcode:2023Sci...379.7850Y. doi:10.1126/science.abn7850. hdl:2115/90313. ISSN 0036-8075. PMID 35679354. https://www.science.org/doi/10.1126/science.abn7850
Glavin, Daniel P.; Alexander, Conel M.O'D.; Aponte, José C.; Dworkin, Jason P.; Elsila, Jamie E.; Yabuta, Hikaru (2018), "The Origin and Evolution of Organic Matter in Carbonaceous Chondrites and Links to Their Parent Bodies", Primitive Meteorites and Asteroids, Elsevier, pp. 205–271, doi:10.1016/b978-0-12-813325-5.00003-3, hdl:2060/20180004493, ISBN 978-0-12-813325-5, retrieved 6 April 2025 978-0-12-813325-5
Mason, B (1 January 1971). Handbook of elemental abundances in meteorites. Gordon and Breach, Science Publishers, Inc., New York. OSTI 4366427. /wiki/OSTI_(identifier)
Doh, Seong-Jae; Yu, Yong-Jae (31 December 2010). "Meteorites: Rocks from the Outer Space". Journal of the Korean Astronomical Society. 43 (6): 183–190. Bibcode:2010JKAS...43..183D. doi:10.5303/jkas.2010.43.6.183. ISSN 1225-4614. https://doi.org/10.5303/jkas.2010.43.6.183
Rowe, Marvin W.; Clayton, Robert N.; Mayeda, Toshiko K. (22 August 1994). "Oxygen isotopes in separated components of CI and CM meteorites". Geochimica et Cosmochimica Acta. 58 (23): 5341–5347. Bibcode:1994GeCoA..58.5341R. doi:10.1016/0016-7037(94)90317-4. https://linkinghub.elsevier.com/retrieve/pii/0016703794903174
Doh, Seong-Jae; Yu, Yong-Jae (31 December 2010). "Meteorites: Rocks from the Outer Space". Journal of the Korean Astronomical Society. 43 (6): 183–190. Bibcode:2010JKAS...43..183D. doi:10.5303/jkas.2010.43.6.183. ISSN 1225-4614. https://doi.org/10.5303/jkas.2010.43.6.183
Rowe, Marvin W.; Clayton, Robert N.; Mayeda, Toshiko K. (22 August 1994). "Oxygen isotopes in separated components of CI and CM meteorites". Geochimica et Cosmochimica Acta. 58 (23): 5341–5347. Bibcode:1994GeCoA..58.5341R. doi:10.1016/0016-7037(94)90317-4. https://linkinghub.elsevier.com/retrieve/pii/0016703794903174
Rowe, Marvin W.; Clayton, Robert N.; Mayeda, Toshiko K. (22 August 1994). "Oxygen isotopes in separated components of CI and CM meteorites". Geochimica et Cosmochimica Acta. 58 (23): 5341–5347. Bibcode:1994GeCoA..58.5341R. doi:10.1016/0016-7037(94)90317-4. https://linkinghub.elsevier.com/retrieve/pii/0016703794903174
Palme, H.; Zipfel, J. (30 July 2021). "The composition of CI chondrites and their contents of chlorine and bromine: Results from instrumental neutron activation analysis". Meteoritics & Planetary Science. 57 (2): 317–333. doi:10.1111/maps.13720. ISSN 1086-9379. https://onlinelibrary.wiley.com/doi/10.1111/maps.13720
Kallemeyn, Gregory W.; Wasson, John T. (12 March 1981). "The compositional classification of chondrites—I. The carbonaceous chondrite groups". Geochimica et Cosmochimica Acta. 45 (7): 1217–1230. Bibcode:1981GeCoA..45.1217K. doi:10.1016/0016-7037(81)90145-9. https://linkinghub.elsevier.com/retrieve/pii/0016703781901459
Tomeoka, Kazushige; Buseck, Peter R. (11 March 1988). "Matrix mineralogy of the Orgueil CI carbonaceous chondrite". Geochimica et Cosmochimica Acta. 52 (6): 1627–1640. Bibcode:1988GeCoA..52.1627T. doi:10.1016/0016-7037(88)90231-1. https://linkinghub.elsevier.com/retrieve/pii/0016703788902311
Brearley, A. J. (1992). Mineralogy of fine grained matrix in the Ivuna CI carbonaceous chondrite. LPS XXIII. p. 153.
Tomeoka, Kazushige; Buseck, Peter R. (11 March 1988). "Matrix mineralogy of the Orgueil CI carbonaceous chondrite". Geochimica et Cosmochimica Acta. 52 (6): 1627–1640. Bibcode:1988GeCoA..52.1627T. doi:10.1016/0016-7037(88)90231-1. https://linkinghub.elsevier.com/retrieve/pii/0016703788902311
Larimer, J.W; Anders, Edward (March 1970). "Chemical fractionations in meteorites—III. Major element fractionations in chondrites". Geochimica et Cosmochimica Acta. 34 (3): 367–387. Bibcode:1970GeCoA..34..367L. doi:10.1016/0016-7037(70)90112-2. https://linkinghub.elsevier.com/retrieve/pii/0016703770901122
Brearley, Adrian J.; Prinz, martin (March 1992). "CI chondrite-like clasts in the Nilpena polymict ureilite: Implications for aqueous alteration processes in CI chondrites". Geochimica et Cosmochimica Acta. 56 (3): 1373–1386. Bibcode:1992GeCoA..56.1373B. doi:10.1016/0016-7037(92)90068-T. https://linkinghub.elsevier.com/retrieve/pii/001670379290068T
Tomeoka, Kazushige; Buseck, Peter R. (11 March 1988). "Matrix mineralogy of the Orgueil CI carbonaceous chondrite". Geochimica et Cosmochimica Acta. 52 (6): 1627–1640. Bibcode:1988GeCoA..52.1627T. doi:10.1016/0016-7037(88)90231-1. https://linkinghub.elsevier.com/retrieve/pii/0016703788902311
Brearley, A. J. (1992). Mineralogy of fine grained matrix in the Ivuna CI carbonaceous chondrite. LPS XXIII. p. 153.
Scott, E. R. D.; Krot, A. N. (1 January 2007), Holland, Heinrich D.; Turekian, Karl K. (eds.), "1.07 - Chondrites and Their Components", Treatise on Geochemistry, Oxford: Pergamon, pp. 1–72, doi:10.1016/b0-08-043751-6/01145-2, ISBN 978-0-08-043751-4, retrieved 7 April 2025 978-0-08-043751-4
Zolensky, M.; Barrett, R.; Browning, L. (1993). "Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites". Geochim. 57 (13): 3123−48. Bibcode:1993GeCoA..57.3123Z. doi:10.1016/0016-7037(93)90298-B. /wiki/Bibcode_(identifier)
Bass, M. N. (1971). "Montmorillonite and serpentine in Orgueil meteorite". Geochim. Cosmochim. Acta. 35 (2): 139−47. Bibcode:1971GeCoA..35..139B. doi:10.1016/0016-7037(71)90053-6. /wiki/Bibcode_(identifier)
Kerridge, John F.; Mackay, Alan L.; Boynton, William V. (27 July 1979). "Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface". Science. 205 (4404): 395–397. Bibcode:1979Sci...205..395K. doi:10.1126/science.205.4404.395. ISSN 0036-8075. PMID 17790849. https://www.science.org/doi/10.1126/science.205.4404.395
Tomeoka, Kazushige; Buseck, Peter R. (11 March 1988). "Matrix mineralogy of the Orgueil CI carbonaceous chondrite". Geochimica et Cosmochimica Acta. 52 (6): 1627–1640. Bibcode:1988GeCoA..52.1627T. doi:10.1016/0016-7037(88)90231-1. https://linkinghub.elsevier.com/retrieve/pii/0016703788902311
Rahmdor, P. (1963). "The Opaque Minerals in Stony Meteorites". J. Geophys. Res. 68 (7): 2011. Bibcode:1963JGR....68.2011R. doi:10.1029/JZ068i007p02011. S2CID 129294262. very common" "characteristic /wiki/Bibcode_(identifier)
Alfing, J.; Patzek, M.; Bischoff, A. (2019). "Modal Abundances of coarse-grained (>5um) components within CI-chondrites and their individual clasts − Mixing of various lithologies on the CI parent body(ies)". Geochemistry. 79 (4): 125532. Bibcode:2019ChEG...79l5532A. doi:10.1016/j.chemer.2019.08.004. S2CID 202041205. https://doi.org/10.1016%2Fj.chemer.2019.08.004
Jedwab, J. (1967). "La Magnetite en Plaquettes des Meteorites carbonees D'Alais, Ivuna et Orgueil". Earth Planet. Sci. Lett. 2 (5): 440–444. Bibcode:1967E&PSL...2..440J. doi:10.1016/0012-821X(67)90186-0. /wiki/Bibcode_(identifier)
Jedwab, J. (1971). "La Magnetite de la Meteorite D'Orgueil Vue au Microscope Electronique a Balayage". Icarus. 15 (2): 319–45. Bibcode:1971Icar...15..319J. doi:10.1016/0019-1035(71)90083-2. /wiki/Bibcode_(identifier)
Kerridge, J. F.; Chatterji S. (1968). "Magnetite Content of a Type I Carbonaceous Meteorite". Nature. 220 (5169): 775–76. Bibcode:1968Natur.220R.775K. doi:10.1038/220775b0. S2CID 4192603. /wiki/Bibcode_(identifier)
Rahmdor, P. (1963). "The Opaque Minerals in Stony Meteorites". J. Geophys. Res. 68 (7): 2011. Bibcode:1963JGR....68.2011R. doi:10.1029/JZ068i007p02011. S2CID 129294262. very common" "characteristic /wiki/Bibcode_(identifier)
Kerridge J. F. (1970). "Some observations on the nature of magnetite in the Orgueil meteorite". Earth Planet. Sci. Lett. 9 (4): 229–306. Bibcode:1970E&PSL...9..299K. doi:10.1016/0012-821X(70)90122-6. /wiki/Bibcode_(identifier)
Jedwab, J. (1967). "La Magnetite en Plaquettes des Meteorites carbonees D'Alais, Ivuna et Orgueil". Earth Planet. Sci. Lett. 2 (5): 440–444. Bibcode:1967E&PSL...2..440J. doi:10.1016/0012-821X(67)90186-0. /wiki/Bibcode_(identifier)
Kerridge J. F. (1970). "Some observations on the nature of magnetite in the Orgueil meteorite". Earth Planet. Sci. Lett. 9 (4): 229–306. Bibcode:1970E&PSL...9..299K. doi:10.1016/0012-821X(70)90122-6. /wiki/Bibcode_(identifier)
Hua, X.; Buseck P. R. (1998). "Unusual forms of magnetite in the Orgueil carbonaceous chondrite". Meteorit. Planet. Sci. 33: A215-20. doi:10.1111/j.1945-5100.1998.tb01335.x. S2CID 126546072. https://doi.org/10.1111%2Fj.1945-5100.1998.tb01335.x
Jedwab, J. (1967). "La Magnetite en Plaquettes des Meteorites carbonees D'Alais, Ivuna et Orgueil". Earth Planet. Sci. Lett. 2 (5): 440–444. Bibcode:1967E&PSL...2..440J. doi:10.1016/0012-821X(67)90186-0. /wiki/Bibcode_(identifier)
Kerridge, J. F.; Chatterji S. (1968). "Magnetite Content of a Type I Carbonaceous Meteorite". Nature. 220 (5169): 775–76. Bibcode:1968Natur.220R.775K. doi:10.1038/220775b0. S2CID 4192603. /wiki/Bibcode_(identifier)
Hua, X.; Buseck P. R. (1998). "Unusual forms of magnetite in the Orgueil carbonaceous chondrite". Meteorit. Planet. Sci. 33: A215-20. doi:10.1111/j.1945-5100.1998.tb01335.x. S2CID 126546072. https://doi.org/10.1111%2Fj.1945-5100.1998.tb01335.x
Larson E .E.; Watson D. E.; Herndon J. M.; Rowe M. W. (1974). "Thermomagnetic analysis of meteorites, 1. C1 chondrites". Earth and Planetary Science Letters. 21 (4): 345–50. Bibcode:1974E&PSL..21..345L. doi:10.1016/0012-821X(74)90172-1. hdl:2060/19740018171. S2CID 33501632. presumably FeS /wiki/Bibcode_(identifier)
Watson D. E.; Larson E. E.; Herndon J. M.; Rowe M. W. (1975). "Thermomag anal of meteorites, 2. C2 chondrites". Earth Planet. Sci. Lett. 27: 101–07. doi:10.1016/0012-821X(75)90167-3. hdl:2060/19740018171. /wiki/Doi_(identifier)
Hyman M.; Rowe M. W. (1983). "Magnetite in CI chondrites". J. Geophys. Res. 88: A736-40. Bibcode:1983LPSC...13..736H. doi:10.1029/JB088iS02p0A736. /wiki/Bibcode_(identifier)
Gounelle, M.; Zolensky M. E. (2014). "The Orgueil meteorite: 150 years of history". Meteoritics & Planetary Sci. 49 (10): 1769−94. Bibcode:2014M&PS...49.1769G. doi:10.1111/maps.12351. S2CID 128753934. /wiki/Bibcode_(identifier)
Mason, B.: Meteorites. John Wiley and Son Inc., New York 1962.
Dodd, R. T.: Meteorites: A Petrologic-Chemical Synthesis. Cambridge University Press, New York 1981
Beck, P.; Quirico, E.; Montes-Hernandez, G.; Bonal, L.; Bollard, J.; Orthous-Daunay F.-R.; Howard K. T.; Schmitt B.; Brissaud O.; Deschamps F.; Wunder B.; Guillot S. (2010). "Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids". Geochim. Cosmochim. Acta. 74 (16): 4881−92. Bibcode:2010GeCoA..74.4881B. doi:10.1016/j.gca.2010.05.020. /wiki/Bibcode_(identifier)
Mason, B.: Meteorites. John Wiley and Son Inc., New York 1962.
Richardson, Steven M. (March 1978). "Vein Formation in the C1 Carbonaceous Chondrites". Meteoritics. 13 (1): 141–159. Bibcode:1978Metic..13..141R. doi:10.1111/j.1945-5100.1978.tb00803.x. ISSN 0026-1114. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.1978.tb00803.x
King, Ashley J. (2024), "An introduction to meteorites", Reference Module in Materials Science and Materials Engineering, Elsevier, doi:10.1016/b978-0-443-21439-4.00039-0, ISBN 978-0-12-803581-8, retrieved 7 April 2025 978-0-12-803581-8
Wiik, H.B. (June 1956). "The chemical composition of some stony meteorites". Geochimica et Cosmochimica Acta. 9 (5–6): 279–289. Bibcode:1956GeCoA...9..279W. doi:10.1016/0016-7037(56)90028-X. https://linkinghub.elsevier.com/retrieve/pii/001670375690028X
King, A.J.; Solomon J.R.; Schofield P.F. (2015). "Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy". Earth, Planets and Space. 67: 198. Bibcode:2015EP&S...67..198K. doi:10.1186/s40623-015-0370-4. hdl:10141/622224. S2CID 2148318. https://doi.org/10.1186%2Fs40623-015-0370-4
Fulle, M. N.; Altobelli B.; Buratti B.; Choukroun M.; Fulchignoni M.; Grün E.; Taylor M. G. G. T.; Weissman P. (2016). "Unexpected and significant findings in comet 67P/Churyumov–Gerasimenko: an interdisciplinary view". Mon. Not. R. Astron. Soc. 462 (Suppl_1): S2−8. doi:10.1093/mnras/stw1663. https://doi.org/10.1093%2Fmnras%2Fstw1663
Fulle, M.; Della Corte V.; Rotundi A.; Green S. F.; Accolla M.; Colangeli L.; Ferrari M.; Ivanovski S.; Sordini R.; Zakharov V. (2017). "The dust-to-ices ratio in comets and Kuiper belt objects". Mon. Not. R. Astron. Soc. 469 (Suppl_2): S45−49. doi:10.1093/mnras/stx983. https://doi.org/10.1093%2Fmnras%2Fstx983
Rickman, H. (2017). Origin and Evolution of Comets: Ten Years after the Nice Model and One Year after Rosetta. World Scientific. ISBN 978-981-3222-57-1. 978-981-3222-57-1
Fulle, M.; Blum J.; Green S. F.; Gundlach B.; Herique A.; Moreno F.; Mottola S.; Rotundi A.; Snodgrass C. (2019). "The refractory-to-ice mass ratio in comets". Mon. Not. R. Astron. Soc. 482 (3): 3326–40. doi:10.1093/mnras/sty2926. hdl:10261/189497. https://doi.org/10.1093%2Fmnras%2Fsty2926
Bouquet, A.; Miller K. E. Glein C. R. Mousis O. (2021). "Limits on the contribution of early endogenous radiolysis to oxidation in carbonaceous chondrites' parent bodies". Astron. Astrophys. 653: A59. Bibcode:2021A&A...653A..59B. doi:10.1051/0004-6361/202140798. S2CID 237913967. https://doi.org/10.1051%2F0004-6361%2F202140798
Consolmagno S.J., G. J.; Britt, D. T. (November 1998). "The density and porosity of meteorites from the Vatican collection". Meteoritics & Planetary Science. 33 (6): 1231–1241. Bibcode:1998M&PS...33.1231C. doi:10.1111/j.1945-5100.1998.tb01308.x. ISSN 1086-9379. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.1998.tb01308.x
Beck, P.; Quirico, E.; Montes-Hernandez, G.; Bonal, L.; Bollard, J.; Orthous-Daunay F.-R.; Howard K. T.; Schmitt B.; Brissaud O.; Deschamps F.; Wunder B.; Guillot S. (2010). "Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids". Geochim. Cosmochim. Acta. 74 (16): 4881−92. Bibcode:2010GeCoA..74.4881B. doi:10.1016/j.gca.2010.05.020. /wiki/Bibcode_(identifier)
Yokoyama, Tetsuya; Nagashima, Kazuhide; Nakai, Izumi; Young, Edward D.; Abe, Yoshinari; Aléon, Jérôme; Alexander, Conel M. O’D.; Amari, Sachiko; Amelin, Yuri; Bajo, Ken-ichi; Bizzarro, Martin; Bouvier, Audrey; Carlson, Richard W.; Chaussidon, Marc; Choi, Byeon-Gak (24 February 2023). "Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites". Science. 379 (6634): eabn7850. Bibcode:2023Sci...379.7850Y. doi:10.1126/science.abn7850. hdl:2115/90313. ISSN 0036-8075. PMID 35679354. https://www.science.org/doi/10.1126/science.abn7850
Richardson, Steven M. (March 1978). "Vein Formation in the C1 Carbonaceous Chondrites". Meteoritics. 13 (1): 141–159. Bibcode:1978Metic..13..141R. doi:10.1111/j.1945-5100.1978.tb00803.x. ISSN 0026-1114. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.1978.tb00803.x
Bostrom, Kurt; Fredriksson, Kurt (27 July 1966). "SURFACE CONDITIONS OF THE ORGUEIL METEORITE PARENT BODY AS INDICATED BY MINERAL ASSOCIATIONS". Smithsonian Miscellaneous Collections. 151 (3): 1–36. https://biostor.org/reference/285944
Fredriksson, Kurt; Kerridge, John F. (March 1988). "Carbonates and Sulfates in CI Chondrites: Formation by Aqueous Activity on the Parent Body". Meteoritics. 23 (1): 35–44. Bibcode:1988Metic..23...35F. doi:10.1111/j.1945-5100.1988.tb00894.x. ISSN 0026-1114. PMID 11538410. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.1988.tb00894.x
Saylor, J.; Zolensky M.; Bodnar R.; Le L.; Schwandt C. (2001). Fluid Inclusions in Carbonaceous Chondrites. LPS XXXII. p. 1875.
Zolensky, M. E.; Bodnar R. J.; Yurimoto H.; Itoh S.; Fries M.; Steele A.; Chan Q. H.-S.; Tsuchiyama A.; Kebukawa Y.; Ito M. (2017). "The search for and analysis of direct samples of early Solar System aqueous fluids". Phil. Trans. R. Soc. A. 375 (2094): 20150386. Bibcode:2017RSPTA.37550386Z. doi:10.1098/rsta.2015.0386. PMC 5394253. PMID 28416725. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394253
Alexander, C.M.O’D.; Fogel, M.; Yabuta, H.; Cody, G.D. (September 2007). "The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter". Geochimica et Cosmochimica Acta. 71 (17): 4380–4403. Bibcode:2007GeCoA..71.4380A. doi:10.1016/j.gca.2007.06.052. https://linkinghub.elsevier.com/retrieve/pii/S001670370700395X
Glavin, Daniel P.; Alexander, Conel M.O'D.; Aponte, José C.; Dworkin, Jason P.; Elsila, Jamie E.; Yabuta, Hikaru (2018), "The Origin and Evolution of Organic Matter in Carbonaceous Chondrites and Links to Their Parent Bodies", Primitive Meteorites and Asteroids, Elsevier, pp. 205–271, doi:10.1016/b978-0-12-813325-5.00003-3, hdl:2060/20180004493, ISBN 978-0-12-813325-5, retrieved 7 April 2025 978-0-12-813325-5
Yang, J.; Epstein, S. (1983). "Interstellar organic matter in meteorites". Geochim. Cosmochim. Acta. 47 (12): 21992216. Bibcode:1983GeCoA..47.2199Y. doi:10.1016/0016-7037(83)90043-1. /wiki/Bibcode_(identifier)
Grady, M. M.; Wright, I. A. (2003). "Elemental and Isotopic Abundances of Carbon and Nitrogen in Meteorites". Space Sci. Rev. 106 (1): 231−48. Bibcode:2003SSRv..106..231G. doi:10.1023/A:1024645906350. S2CID 189792188. /wiki/Bibcode_(identifier)
Tartèse, R.; Chaussidon M.; Gurenko A.; Delarue F.; Robert F. (2018). "Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition". PNAS. 115 (34): 8535−40. Bibcode:2018PNAS..115.8535T. doi:10.1073/pnas.1808101115. PMC 6112742. PMID 30082400. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112742
Aponte, José C.; Dworkin, Jason P.; Glavin, Daniel P.; Elsila, Jamie E.; Parker, Eric T.; McLain, Hannah L.; Naraoka, Hiroshi; Okazaki, Ryuji; Takano, Yoshinori; Tachibana, Shogo; Dong, Guannan; Zeichner, Sarah S.; Eiler, John M.; Yurimoto, Hisayoshi; Nakamura, Tomoki (27 February 2023). "PAHs, hydrocarbons, and dimethylsulfides in Asteroid Ryugu samples A0106 and C0107 and the Orgueil (CI1) meteorite". Earth, Planets and Space. 75 (1): 28. Bibcode:2023EP&S...75...28A. doi:10.1186/s40623-022-01758-4. ISSN 1880-5981. https://doi.org/10.1186%2Fs40623-022-01758-4
Aponte, José C.; Dworkin, Jason P.; Glavin, Daniel P.; Elsila, Jamie E.; Parker, Eric T.; McLain, Hannah L.; Naraoka, Hiroshi; Okazaki, Ryuji; Takano, Yoshinori; Tachibana, Shogo; Dong, Guannan; Zeichner, Sarah S.; Eiler, John M.; Yurimoto, Hisayoshi; Nakamura, Tomoki (27 February 2023). "PAHs, hydrocarbons, and dimethylsulfides in Asteroid Ryugu samples A0106 and C0107 and the Orgueil (CI1) meteorite". Earth, Planets and Space. 75 (1): 28. Bibcode:2023EP&S...75...28A. doi:10.1186/s40623-022-01758-4. ISSN 1880-5981. https://doi.org/10.1186%2Fs40623-022-01758-4
Hayatsu, Ryoichi (4 December 1964). "Orgueil Meteorite: Organic Nitrogen Contents". Science. 146 (3649): 1291–1293. Bibcode:1964Sci...146.1291H. doi:10.1126/science.146.3649.1291. ISSN 0036-8075. PMID 17810143. https://www.science.org/doi/10.1126/science.146.3649.1291
Stoks, Peter G.; Schwartz, Alan W. (December 1979). "Uracil in carbonaceous meteorites". Nature. 282 (5740): 709–710. Bibcode:1979Natur.282..709S. doi:10.1038/282709a0. ISSN 0028-0836. https://www.nature.com/articles/282709a0
Callahan, Michael P.; Smith, Karen E.; Cleaves, H. James; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P. (23 August 2011). "Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases". Proceedings of the National Academy of Sciences. 108 (34): 13995–13998. Bibcode:2011PNAS..10813995C. doi:10.1073/pnas.1106493108. ISSN 0027-8424. PMC 3161613. PMID 21836052. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161613
Hayatsu, Ryoichi (4 December 1964). "Orgueil Meteorite: Organic Nitrogen Contents". Science. 146 (3649): 1291–1293. Bibcode:1964Sci...146.1291H. doi:10.1126/science.146.3649.1291. ISSN 0036-8075. PMID 17810143. https://www.science.org/doi/10.1126/science.146.3649.1291
Oba, Yasuhiro; Koga, Toshiki; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko; Sasaki, Kazunori; Sato, Hajime; Glavin, Daniel P.; Dworkin, Jason P.; Naraoka, Hiroshi; Tachibana, Shogo; Yurimoto, Hisayoshi; Nakamura, Tomoki; Noguchi, Takaaki; Okazaki, Ryuji (21 March 2023). "Uracil in the carbonaceous asteroid (162173) Ryugu". Nature Communications. 14 (1): 1292. Bibcode:2023NatCo..14.1292O. doi:10.1038/s41467-023-36904-3. ISSN 2041-1723. PMC 10030641. PMID 36944653. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030641
Hayatsu, Ryoichi (4 December 1964). "Orgueil Meteorite: Organic Nitrogen Contents". Science. 146 (3649): 1291–1293. Bibcode:1964Sci...146.1291H. doi:10.1126/science.146.3649.1291. ISSN 0036-8075. PMID 17810143. https://www.science.org/doi/10.1126/science.146.3649.1291
Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E. (December 2010). "The effects of parent body processes on amino acids in carbonaceous chondrites: Amino acids in carbonaceous chondrites". Meteoritics & Planetary Science. 45 (12): 1948–1972. doi:10.1111/j.1945-5100.2010.01132.x. hdl:2060/20100032396. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2010.01132.x
Ehrenfreund, P.; Glavin D. P.; Botta O.; Cooper G.; Bada J. L. (2001). "Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites". PNAS. 98 (5): 2138–2141. doi:10.1073/pnas.051502898. PMC 30105. PMID 11226205. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC30105
Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E. (December 2010). "The effects of parent body processes on amino acids in carbonaceous chondrites: Amino acids in carbonaceous chondrites". Meteoritics & Planetary Science. 45 (12): 1948–1972. doi:10.1111/j.1945-5100.2010.01132.x. hdl:2060/20100032396. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2010.01132.x
Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E. (December 2010). "The effects of parent body processes on amino acids in carbonaceous chondrites: Amino acids in carbonaceous chondrites". Meteoritics & Planetary Science. 45 (12): 1948–1972. doi:10.1111/j.1945-5100.2010.01132.x. hdl:2060/20100032396. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2010.01132.x
Dufresne, E.R.; Anders, Edward (November 1962). "On the chemical evolution of the carbonaceous chondrites". Geochimica et Cosmochimica Acta. 26 (11): 1085–1114. Bibcode:1962GeCoA..26.1085D. doi:10.1016/0016-7037(62)90047-9. https://linkinghub.elsevier.com/retrieve/pii/0016703762900479
Richardson, Steven M. (March 1978). "Vein Formation in the C1 Carbonaceous Chondrites". Meteoritics. 13 (1): 141–159. Bibcode:1978Metic..13..141R. doi:10.1111/j.1945-5100.1978.tb00803.x. ISSN 0026-1114. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.1978.tb00803.x
Fredriksson, Kurt; Kerridge, John F. (March 1988). "Carbonates and Sulfates in CI Chondrites: Formation by Aqueous Activity on the Parent Body". Meteoritics. 23 (1): 35–44. Bibcode:1988Metic..23...35F. doi:10.1111/j.1945-5100.1988.tb00894.x. ISSN 0026-1114. PMID 11538410. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.1988.tb00894.x
Endress, Magnus; Zinner, Ernst; Bischoff, Adolf (February 1996). "Early aqueous activity on primitive meteorite parent bodies". Nature. 379 (6567): 701–703. Bibcode:1996Natur.379..701E. doi:10.1038/379701a0. ISSN 0028-0836. PMID 8602215. https://www.nature.com/articles/379701a0
Johnson, Craig A.; Prinz, Martin (June 1993). "Carbonate compositions in CM and CI chondrites and implications for aqueous alteration". Geochimica et Cosmochimica Acta. 57 (12): 2843–2852. Bibcode:1993GeCoA..57.2843J. doi:10.1016/0016-7037(93)90393-B. https://linkinghub.elsevier.com/retrieve/pii/001670379390393B
Aponte, José C.; Dworkin, Jason P.; Glavin, Daniel P.; Elsila, Jamie E.; Parker, Eric T.; McLain, Hannah L.; Naraoka, Hiroshi; Okazaki, Ryuji; Takano, Yoshinori; Tachibana, Shogo; Dong, Guannan; Zeichner, Sarah S.; Eiler, John M.; Yurimoto, Hisayoshi; Nakamura, Tomoki (27 February 2023). "PAHs, hydrocarbons, and dimethylsulfides in Asteroid Ryugu samples A0106 and C0107 and the Orgueil (CI1) meteorite". Earth, Planets and Space. 75 (1): 28. Bibcode:2023EP&S...75...28A. doi:10.1186/s40623-022-01758-4. ISSN 1880-5981. https://doi.org/10.1186%2Fs40623-022-01758-4
Orthous-Daunay, F.-R.; Quirico, E.; Lemelle, L.; Beck, P.; deAndrade, V.; Simionovici, A.; Derenne, S. (December 2010). "Speciation of sulfur in the insoluble organic matter from carbonaceous chondrites by XANES spectroscopy". Earth and Planetary Science Letters. 300 (3–4): 321–328. Bibcode:2010E&PSL.300..321O. doi:10.1016/j.epsl.2010.10.012. https://linkinghub.elsevier.com/retrieve/pii/S0012821X10006461
Gounelle, Matthieu; Zolensky, Michael E. (October 2001). "A terrestrial origin for sulfate veins in CI1 chondrites". Meteoritics & Planetary Science. 36 (10): 1321–1329. Bibcode:2001M&PS...36.1321G. doi:10.1111/j.1945-5100.2001.tb01827.x. ISSN 1086-9379. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2001.tb01827.x
Scott, E. R. D.; Krot, A. N. (1 January 2007), Holland, Heinrich D.; Turekian, Karl K. (eds.), "1.07 - Chondrites and Their Components", Treatise on Geochemistry, Oxford: Pergamon, pp. 1–72, doi:10.1016/b0-08-043751-6/01145-2, ISBN 978-0-08-043751-4, retrieved 7 April 2025 978-0-08-043751-4
Kimura, Makoto; Ito, Motoo; Monoi, Akira; Yamaguchi, Akira; Greenwood, Richard C. (August 2024). "The primary abundance of chondrules in CI chondrites". Geochimica et Cosmochimica Acta. 378: 36–44. Bibcode:2024GeCoA.378...36K. doi:10.1016/j.gca.2024.06.002. https://linkinghub.elsevier.com/retrieve/pii/S0016703724002874
Leshin, Laurie A.; Rubin, Alan E.; McKeegan, Kevin D. (February 1997). "The oxygen isotopic composition of olivine and pyroxene from CI chondrites". Geochimica et Cosmochimica Acta. 61 (4): 835–845. Bibcode:1997GeCoA..61..835L. doi:10.1016/S0016-7037(96)00374-2. https://linkinghub.elsevier.com/retrieve/pii/S0016703796003742
Morin, Gatien L.F.; Marrocchi, Yves; Villeneuve, Johan; Jacquet, Emmanuel (September 2022). "16O-rich anhydrous silicates in CI chondrites: Implications for the nature and dynamics of dust in the solar accretion disk". Geochimica et Cosmochimica Acta. 332: 203–219. doi:10.1016/j.gca.2022.06.017. https://linkinghub.elsevier.com/retrieve/pii/S0016703722003015
Frank, D.; Zolensky, M.; Martinez J.; Mikouchi T.; Ohsumi K.; Hagiya K.; Satake W.; Le L.; Ross D.; Peslier A. (2011). A CAI in the Ivuna CI1 Chondrite. 42nd LPSC. p. 2785.
King, Ashley J. (2024), "An introduction to meteorites", Reference Module in Materials Science and Materials Engineering, Elsevier, doi:10.1016/b978-0-443-21439-4.00039-0, ISBN 978-0-12-803581-8, retrieved 7 April 2025 978-0-12-803581-8
Von Michaelis, H., Ahrens, I. H. & Willis, J.P.: The compositions of stony meteorites – II. The analytical data and an assessment of their quality. In: Earth and Planetary Scientific Letters. 5, 1969.
Van Schmus, W. R. & Hayes, J. M.: Chemical and petrographic correlations among carbonaceous chondrites. In: Geochimica Cosmochimica Acta. 38, 1974.
Doh, Seong-Jae; Yu, Yong-Jae (31 December 2010). "Meteorites: Rocks from the Outer Space". Journal of the Korean Astronomical Society. 43 (6): 183–190. Bibcode:2010JKAS...43..183D. doi:10.5303/jkas.2010.43.6.183. ISSN 1225-4614. https://doi.org/10.5303/jkas.2010.43.6.183
Beck, P.; Quirico, E.; Montes-Hernandez, G.; Bonal, L.; Bollard, J.; Orthous-Daunay F.-R.; Howard K. T.; Schmitt B.; Brissaud O.; Deschamps F.; Wunder B.; Guillot S. (2010). "Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids". Geochim. Cosmochim. Acta. 74 (16): 4881−92. Bibcode:2010GeCoA..74.4881B. doi:10.1016/j.gca.2010.05.020. /wiki/Bibcode_(identifier)
Tomeoka, Kazushige; Buseck, Peter R. (11 March 1988). "Matrix mineralogy of the Orgueil CI carbonaceous chondrite". Geochimica et Cosmochimica Acta. 52 (6): 1627–1640. Bibcode:1988GeCoA..52.1627T. doi:10.1016/0016-7037(88)90231-1. https://linkinghub.elsevier.com/retrieve/pii/0016703788902311
Tomeoka, Kazushige; Buseck, Peter R. (11 March 1988). "Matrix mineralogy of the Orgueil CI carbonaceous chondrite". Geochimica et Cosmochimica Acta. 52 (6): 1627–1640. Bibcode:1988GeCoA..52.1627T. doi:10.1016/0016-7037(88)90231-1. https://linkinghub.elsevier.com/retrieve/pii/0016703788902311
Brearley, A. J. (1992). Mineralogy of fine grained matrix in the Ivuna CI carbonaceous chondrite. LPS XXIII. p. 153.
Bass, M. N. (1971). "Montmorillonite and serpentine in Orgueil meteorite". Geochim. Cosmochim. Acta. 35 (2): 139−47. Bibcode:1971GeCoA..35..139B. doi:10.1016/0016-7037(71)90053-6. /wiki/Bibcode_(identifier)
Keller L. P.; Thomas K. L.; McKay D. S. (1992). "An interplanetary dust particle with links to CI chondrites". Geochim. Cosmochim. Acta. 56 (3): 1409–12. Bibcode:1992GeCoA..56.1409K. doi:10.1016/0016-7037(92)90072-Q. /wiki/Bibcode_(identifier)
Scott, E. R. D.; Krot, A. N. (1 January 2007), Holland, Heinrich D.; Turekian, Karl K. (eds.), "1.07 - Chondrites and Their Components", Treatise on Geochemistry, Oxford: Pergamon, pp. 1–72, doi:10.1016/b0-08-043751-6/01145-2, ISBN 978-0-08-043751-4, retrieved 7 April 2025 978-0-08-043751-4
Frank, D.; Zolensky, M.; Martinez J.; Mikouchi T.; Ohsumi K.; Hagiya K.; Satake W.; Le L.; Ross D.; Peslier A. (2011). A CAI in the Ivuna CI1 Chondrite. 42nd LPSC. p. 2785.
Kimura, Makoto; Ito, Motoo; Monoi, Akira; Yamaguchi, Akira; Greenwood, Richard C. (August 2024). "The primary abundance of chondrules in CI chondrites". Geochimica et Cosmochimica Acta. 378: 36–44. Bibcode:2024GeCoA.378...36K. doi:10.1016/j.gca.2024.06.002. https://linkinghub.elsevier.com/retrieve/pii/S0016703724002874
Kimura, Makoto; Ito, Motoo; Monoi, Akira; Yamaguchi, Akira; Greenwood, Richard C. (August 2024). "The primary abundance of chondrules in CI chondrites". Geochimica et Cosmochimica Acta. 378: 36–44. Bibcode:2024GeCoA.378...36K. doi:10.1016/j.gca.2024.06.002. https://linkinghub.elsevier.com/retrieve/pii/S0016703724002874
Zolensky, M. E. & Thomas, K. L. (1995). GCA, 59, p. 4707–4712.
Tomeoka, Kazushige; Buseck, Peter R. (11 March 1988). "Matrix mineralogy of the Orgueil CI carbonaceous chondrite". Geochimica et Cosmochimica Acta. 52 (6): 1627–1640. Bibcode:1988GeCoA..52.1627T. doi:10.1016/0016-7037(88)90231-1. https://linkinghub.elsevier.com/retrieve/pii/0016703788902311
King, A.J.; Schofield, P.F.; Howard, K.T.; Russell, S.S. (September 2015). "Modal mineralogy of CI and CI-like chondrites by X-ray diffraction". Geochimica et Cosmochimica Acta. 165: 148–160. Bibcode:2015GeCoA.165..148K. doi:10.1016/j.gca.2015.05.038. hdl:10141/622204. https://linkinghub.elsevier.com/retrieve/pii/S0016703715003634
McSween, H. Y.; Richardson, S. M. (1977). "The composition of carbonaceous chondrite matrix". Geochim. Cosmochim. Acta. 41 (8): 1145–61. Bibcode:1977GeCoA..41.1145M. doi:10.1016/0016-7037(77)90110-7. /wiki/Bibcode_(identifier)
Palme, H.; Zipfel, J. (30 July 2021). "The composition of CI chondrites and their contents of chlorine and bromine: Results from instrumental neutron activation analysis". Meteoritics & Planetary Science. 57 (2): 317–333. doi:10.1111/maps.13720. ISSN 1086-9379. https://onlinelibrary.wiley.com/doi/10.1111/maps.13720
King, A.J.; Schofield, P.F.; Howard, K.T.; Russell, S.S. (September 2015). "Modal mineralogy of CI and CI-like chondrites by X-ray diffraction". Geochimica et Cosmochimica Acta. 165: 148–160. Bibcode:2015GeCoA.165..148K. doi:10.1016/j.gca.2015.05.038. hdl:10141/622204. https://linkinghub.elsevier.com/retrieve/pii/S0016703715003634
Piralla, M.; Marrocchi, Y.; Verdier-Paoletti M. J.; Vacher L.; Villeneuve J.; Piani L.; Bekaert D. V.; Gounelle M. "Primitive water and dust of the Solar System: Insights from in situ oxygen measurements of CI chondrites". Geochim. Cosmochim. Acta. 269: 451−64. doi:10.1016/j.gca.2019.10.041. S2CID 209722141. https://doi.org/10.1016%2Fj.gca.2019.10.041
Bland P. A.; Travis B. J. (2017). "Giant convecting mud balls of the early solar system". Science Advances. 3 (7): e1602514. Bibcode:2017SciA....3E2514B. doi:10.1126/sciadv.1602514. PMC 5510966. PMID 28740862. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510966
Tonui, E. K.; Zolensky, M. E.; Lipschutz, M. E.; Wang, M.-S.; Nakamura, T. (2003). "Yamato 86029: Aqueously altered and thermally metamorphosed CI-like chondrite with unusual textures". Meteorit. Planet. Sci. 38 (2): 269−92. Bibcode:2003M&PS...38..269T. doi:10.1111/j.1945-5100.2003.tb00264.x. S2CID 56238044. https://doi.org/10.1111%2Fj.1945-5100.2003.tb00264.x
Morlok, A.; Bischoff A. Stephan T. Floss C. Zinner E. Jessberger E. K. (2006). "Brecciation and chemical heterogeneities of CI chondrites". Geochim. Cosmochim. Acta. 70 (21): 5371–94. Bibcode:2006GeCoA..70.5371M. doi:10.1016/j.gca.2006.08.007. /wiki/Bibcode_(identifier)
Bischoff, A. (1998). "Aqueous Alteration of Carbonaceous Chondrites: Evidence for Preaccretionary Alteration". Meteorit. Planet. Sci. 33 (5): 1113−22. Bibcode:1998M&PS...33.1113B. doi:10.1111/J.1945-5100.1998.TB01716.X. S2CID 129091212. https://doi.org/10.1111%2FJ.1945-5100.1998.TB01716.X
Tomeoka, K. (1990). "Phyllosilicate veins in a CI meteorite: evidence for aqueous alteration on the parent body". Nature. 345 (6271): 138−40. Bibcode:1990Natur.345..138T. doi:10.1038/345138a0. S2CID 4326128. /wiki/Bibcode_(identifier)
Tomeoka, Kazushige; Buseck, Peter R. (11 March 1988). "Matrix mineralogy of the Orgueil CI carbonaceous chondrite". Geochimica et Cosmochimica Acta. 52 (6): 1627–1640. Bibcode:1988GeCoA..52.1627T. doi:10.1016/0016-7037(88)90231-1. https://linkinghub.elsevier.com/retrieve/pii/0016703788902311
Brearley, A. J. (1992). Mineralogy of fine grained matrix in the Ivuna CI carbonaceous chondrite. LPS XXIII. p. 153.
Kerridge J. F. (1970). "Some observations on the nature of magnetite in the Orgueil meteorite". Earth Planet. Sci. Lett. 9 (4): 229–306. Bibcode:1970E&PSL...9..299K. doi:10.1016/0012-821X(70)90122-6. /wiki/Bibcode_(identifier)
Hua, X.; Buseck P. R. (1998). "Unusual forms of magnetite in the Orgueil carbonaceous chondrite". Meteorit. Planet. Sci. 33: A215-20. doi:10.1111/j.1945-5100.1998.tb01335.x. S2CID 126546072. https://doi.org/10.1111%2Fj.1945-5100.1998.tb01335.x
Ikeda Y.; Prinz M. (1993). "Petrologic study of the Belgica 7904 carbonaceous chondrite: Hydrous alteration, thermal metamorphism, and relation to CM and CI chondrites". Geochim. Cosmochim. Acta. 57: 439–52. doi:10.1016/0016-7037(93)90442-Y. /wiki/Doi_(identifier)
Amano, Kana; Matsuoka, Moe; Nakamura, Tomoki; Kagawa, Eiichi; Fujioka, Yuri; Potin, Sandra M.; Hiroi, Takahiro; Tatsumi, Eri; Milliken, Ralph E.; Quirico, Eric; Beck, Pierre; Brunetto, Rosario; Uesugi, Masayuki; Takahashi, Yoshio; Kawai, Takahiro (8 December 2023). "Reassigning CI chondrite parent bodies based on reflectance spectroscopy of samples from carbonaceous asteroid Ryugu and meteorites". Science Advances. 9 (49): eadi3789. Bibcode:2023SciA....9I3789A. doi:10.1126/sciadv.adi3789. ISSN 2375-2548. PMC 10699774. PMID 38055820. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10699774
Sugita, S.; Honda, R.; Morota, T.; Kameda, S.; Sawada, H.; Tatsumi, E.; Yamada, M.; Honda, C.; Yokota, Y.; Kouyama, T.; Sakatani, N.; Ogawa, K.; Suzuki, H.; Okada, T.; Namiki, N. (19 April 2019). "The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes". Science. 364 (6437): 252. Bibcode:2019Sci...364..252S. doi:10.1126/science.aaw0422. ISSN 0036-8075. PMC 7370239. PMID 30890587. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370239
Kitazato, K.; Milliken, R. E.; Iwata, T.; Abe, M.; Ohtake, M.; Matsuura, S.; Arai, T.; Nakauchi, Y.; Nakamura, T.; Matsuoka, M.; Senshu, H.; Hirata, N.; Hiroi, T.; Pilorget, C.; Brunetto, R. (19 April 2019). "The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy". Science. 364 (6437): 272–275. Bibcode:2019Sci...364..272K. doi:10.1126/science.aav7432. ISSN 0036-8075. PMID 30890589. https://www.science.org/doi/10.1126/science.aav7432
Amano, Kana; Matsuoka, Moe; Nakamura, Tomoki; Kagawa, Eiichi; Fujioka, Yuri; Potin, Sandra M.; Hiroi, Takahiro; Tatsumi, Eri; Milliken, Ralph E.; Quirico, Eric; Beck, Pierre; Brunetto, Rosario; Uesugi, Masayuki; Takahashi, Yoshio; Kawai, Takahiro (8 December 2023). "Reassigning CI chondrite parent bodies based on reflectance spectroscopy of samples from carbonaceous asteroid Ryugu and meteorites". Science Advances. 9 (49): eadi3789. Bibcode:2023SciA....9I3789A. doi:10.1126/sciadv.adi3789. ISSN 2375-2548. PMC 10699774. PMID 38055820. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10699774
King, A.J.; Schofield, P.F.; Howard, K.T.; Russell, S.S. (September 2015). "Modal mineralogy of CI and CI-like chondrites by X-ray diffraction". Geochimica et Cosmochimica Acta. 165: 148–160. Bibcode:2015GeCoA.165..148K. doi:10.1016/j.gca.2015.05.038. hdl:10141/622204. https://linkinghub.elsevier.com/retrieve/pii/S0016703715003634
Sugita, S.; Honda, R.; Morota, T.; Kameda, S.; Sawada, H.; Tatsumi, E.; Yamada, M.; Honda, C.; Yokota, Y.; Kouyama, T.; Sakatani, N.; Ogawa, K.; Suzuki, H.; Okada, T.; Namiki, N. (19 April 2019). "The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes". Science. 364 (6437): 252. Bibcode:2019Sci...364..252S. doi:10.1126/science.aaw0422. ISSN 0036-8075. PMC 7370239. PMID 30890587. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370239
Kitazato, K.; Milliken, R. E.; Iwata, T.; Abe, M.; Ohtake, M.; Matsuura, S.; Arai, T.; Nakauchi, Y.; Nakamura, T.; Matsuoka, M.; Senshu, H.; Hirata, N.; Hiroi, T.; Pilorget, C.; Brunetto, R. (19 April 2019). "The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy". Science. 364 (6437): 272–275. Bibcode:2019Sci...364..272K. doi:10.1126/science.aav7432. ISSN 0036-8075. PMID 30890589. https://www.science.org/doi/10.1126/science.aav7432
Nakamura, T.; Matsumoto, M.; Amano, K.; Enokido, Y.; Zolensky, M. E.; Mikouchi, T.; Genda, H.; Tanaka, S.; Zolotov, M. Y.; Kurosawa, K.; Wakita, S.; Hyodo, R.; Nagano, H.; Nakashima, D.; Takahashi, Y. (24 February 2023). "Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from returned samples". Science. 379 (6634). Bibcode:2023Sci...379.8671N. doi:10.1126/science.abn8671. ISSN 0036-8075. PMID 36137011. https://www.science.org/doi/10.1126/science.abn8671
Yokoyama, T. Nagashima, K. Nakai, I. Young, E. D. Abe, Y. Aléon, J. O'D. Alexander, C. M. Amari, S. Amelin, Y. Bajo, K. Bizzarro, M. Bouvier, A. Carlson, R. W. Chaussidon, M. and 135 others (10 June 2022). "Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites" (PDF). Science. 379 (6634): 785. Bibcode:2023Sci...379.7850Y. doi:10.1126/science.abn7850. hdl:2115/90313. PMID 35679354.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link) https://hal.science/hal-03825124v1/file/Yokoyama-et-al_2022_science.abn7850.pdf
Goodrich, C. A. (March 2023). "Ryugu and the Quest for Unaltered CI-Like Materials from the Early Solar System". LPSC 2023. 2806: 1446. Bibcode:2023LPICo2806.1446G. /wiki/Bibcode_(identifier)
Amano, Kana; Matsuoka, Moe; Nakamura, Tomoki; Kagawa, Eiichi; Fujioka, Yuri; Potin, Sandra M.; Hiroi, Takahiro; Tatsumi, Eri; Milliken, Ralph E.; Quirico, Eric; Beck, Pierre; Brunetto, Rosario; Uesugi, Masayuki; Takahashi, Yoshio; Kawai, Takahiro (8 December 2023). "Reassigning CI chondrite parent bodies based on reflectance spectroscopy of samples from carbonaceous asteroid Ryugu and meteorites". Science Advances. 9 (49): eadi3789. Bibcode:2023SciA....9I3789A. doi:10.1126/sciadv.adi3789. ISSN 2375-2548. PMC 10699774. PMID 38055820. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10699774
Gounelle, M.; Zolensky M. E. (2014). "The Orgueil meteorite: 150 years of history". Meteoritics & Planetary Sci. 49 (10): 1769−94. Bibcode:2014M&PS...49.1769G. doi:10.1111/maps.12351. S2CID 128753934. /wiki/Bibcode_(identifier)
Gounelle, M.; Spurny P. Bland P. A. (2006). "The atmospheric trajectory and orbit of the Orgueil meteorite". Meteoritics & Planetary Sci. 41: 13550. doi:10.1111/j.1945-5100.2006.tb00198.x. S2CID 59461463. https://doi.org/10.1111%2Fj.1945-5100.2006.tb00198.x
McSween, H. Y.; Emery J. P. Rivkin A. S. Toplis M. J. Castillo-Rogez J. C. Prettyman T. H. De Sanctis M. C. Pieters C. M. Raymond C. A. Russell C. T. (2018). "Carbonaceous chondrites as analogs for the composition and alteration of Ceres". Meteorit. Planet. Sci. 53 (9): 1793−1804. Bibcode:2018M&PS...53.1793M. doi:10.1111/maps.12947. S2CID 42146213. https://doi.org/10.1111%2Fmaps.12947
Chan, Q. H.-S.; Zolensky M. E. (2018). "Organic matter in extraterrestrial water-bearing salt crystals". Science Advances. 4 (1): eaao3521. Bibcode:2018SciA....4.3521C. doi:10.1126/sciadv.aao3521. PMC 5770164. PMID 29349297. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770164
Anders, E. (1971). "Interrelations of meteorites, asteroids, and comets". In Gehrels, T. (ed.). Physical studies of minor planets. NASA. p. 429.
Anders, E. (1975). "Do stony meteorites come from comets". Icarus. 24 (3): 363−71. Bibcode:1975Icar...24..363A. doi:10.1016/0019-1035(75)90132-3. /wiki/Bibcode_(identifier)
Zolensky, M.; Nakamura-Messenger K.; Rietmeijer F.; Leroux H.; Mikouchi T.; Ohsumi K.; et al. (2008). "Comparing Wild 2 particles to chondrites and IDPs". Meteorit. Planet. Sci. 43 (1): 261−72. Bibcode:2008M&PS...43..261Z. doi:10.1111/j.1945-5100.2008.tb00621.x. hdl:2060/20080013409. S2CID 55294679. /wiki/Bibcode_(identifier)
Zolensky, M. E.; Bodnar R. J. Gibson E. Nyquist (1999). "Asteroidal Water Within Fluid Inclusion–Bearing Halite in an H5 Chondrite, Monahans (1998)". Science. 285 (5432): 1377−9. Bibcode:1999Sci...285.1377Z. doi:10.1126/science.285.5432.1377. PMID 10464091. /wiki/Bibcode_(identifier)
Yurimoto, H.; Itoh S. Zolensky M. Kusakabe M. Karen A. Bodnar R. (2014). "Isotopic compositions of asteroidal liquid water trapped in fluid inclusions of chondrites". Geochemical Journal. 48 (6): 549−60. Bibcode:2014GeocJ..48..549Y. doi:10.2343/geochemj.2.0335. hdl:2115/57641. https://doi.org/10.2343%2Fgeochemj.2.0335
Bouquet, A.; Miller K. E. Glein C. R. Mousis O. (2021). "Limits on the contribution of early endogenous radiolysis to oxidation in carbonaceous chondrites' parent bodies". Astron. Astrophys. 653: A59. Bibcode:2021A&A...653A..59B. doi:10.1051/0004-6361/202140798. S2CID 237913967. https://doi.org/10.1051%2F0004-6361%2F202140798
Campins, H.; Swindle T. D. (1998). "Expected characteristics of cometary meteorites". Meteorit. Planet. Sci. 33 (6): 1201−11. Bibcode:1998M&PS...33.1201C. doi:10.1111/j.1945-5100.1998.tb01305.x. S2CID 129019797. https://doi.org/10.1111%2Fj.1945-5100.1998.tb01305.x
Lodders, K.; Osborne R. (1999). "Perspectives on the Comet-Asteroid-Meteorite Link". Space Science Reviews. 90: 289−97. Bibcode:1999SSRv...90..289L. doi:10.1023/A:1005226921031. S2CID 189789172. /wiki/Katharina_Lodders
Gounelle, M.; Morbidelli A. Bland P. A. Spurny P. Young E. D. Sephton M. A. (2008). "Meteorites from the Outer Solar System?". In Barucci M. A. Boehnhardt H. Cruikshank D. P. Morbidelli A. (ed.). The Solar System Beyond Neptune. Tucson: University of Arizona Press. pp. 525−41. ISBN 978-0-8165-2755-7. 978-0-8165-2755-7
Gounelle, M.; Zolensky M. E. (2014). "The Orgueil meteorite: 150 years of history". Meteoritics & Planetary Sci. 49 (10): 1769−94. Bibcode:2014M&PS...49.1769G. doi:10.1111/maps.12351. S2CID 128753934. /wiki/Bibcode_(identifier)
Keller L. P.; Thomas K. L.; McKay D. S. (1992). "An interplanetary dust particle with links to CI chondrites". Geochim. Cosmochim. Acta. 56 (3): 1409–12. Bibcode:1992GeCoA..56.1409K. doi:10.1016/0016-7037(92)90072-Q. /wiki/Bibcode_(identifier)
Brownlee, D. E. (1985). "Cosmic Dust: Collection and Research". Annual Review of Earth and Planetary Sciences. 13: 147−73. Bibcode:1985AREPS..13..147B. doi:10.1146/annurev.ea.13.050185.001051. /wiki/Bibcode_(identifier)
Ebel, D. S.; Grossman L. (2000). "Condensation in dust-enriched systems". Geochim. Cosmochim. Acta. 64 (2): 339−66. arXiv:2307.00641. Bibcode:2000GeCoA..64..339E. doi:10.1016/S0016-7037(99)00284-7. /wiki/ArXiv_(identifier)
Grady, M. M. (2000). Catalogue of Meteorites (5th ed.). Cambridge: Cambridge University Press. ISBN 0-521-66303-2. 0-521-66303-2
Thenard, L. J. (1806). "Analyse d'un aerolithe tombe dans l'arrondisement d'Alais". Ann. Chim. Phys. 59: 103.
Pisani, F. (1864). "Étude chimique et analyse d'aérolithe d'Orgueil". Comptes Rendus de l'Académie des Sciences de Paris. 59: 132–35.
Christie, W. A. K. (1914). "A Carbonaceous Aerolite from Rajputana". Rec. Geol. Surv. India. 44: 41–51.
McSween, H. Y.; Richardson, S. M. (1977). "The composition of carbonaceous chondrite matrix". Geochim. Cosmochim. Acta. 41 (8): 1145–61. Bibcode:1977GeCoA..41.1145M. doi:10.1016/0016-7037(77)90110-7. /wiki/Bibcode_(identifier)
Folinsbee, R. E.; Douglas, J. A. V. (1967). "Revelstoke, a new Type I carbonaceous chondrite". Geochim. Cosmochim. Acta. 31 (10): 1625–35. Bibcode:1967GeCoA..31.1625F. doi:10.1016/0016-7037(67)90111-1. /wiki/Bibcode_(identifier)
Tomeoka, Kazushige; Buseck, Peter R. (11 March 1988). "Matrix mineralogy of the Orgueil CI carbonaceous chondrite". Geochimica et Cosmochimica Acta. 52 (6): 1627–1640. Bibcode:1988GeCoA..52.1627T. doi:10.1016/0016-7037(88)90231-1. https://linkinghub.elsevier.com/retrieve/pii/0016703788902311
Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E. (December 2010). "The effects of parent body processes on amino acids in carbonaceous chondrites: Amino acids in carbonaceous chondrites". Meteoritics & Planetary Science. 45 (12): 1948–1972. doi:10.1111/j.1945-5100.2010.01132.x. hdl:2060/20100032396. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2010.01132.x
Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E. (December 2010). "The effects of parent body processes on amino acids in carbonaceous chondrites: Amino acids in carbonaceous chondrites". Meteoritics & Planetary Science. 45 (12): 1948–1972. doi:10.1111/j.1945-5100.2010.01132.x. hdl:2060/20100032396. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2010.01132.x
Christie, W. A. K. (1914). "The composition of the Tonk Meteorite". The Journal of the Astronomical Society of India. 4 (2): 71–72.
King, A.J.; Schofield, P.F.; Howard, K.T.; Russell, S.S. (September 2015). "Modal mineralogy of CI and CI-like chondrites by X-ray diffraction". Geochimica et Cosmochimica Acta. 165: 148–160. Bibcode:2015GeCoA.165..148K. doi:10.1016/j.gca.2015.05.038. hdl:10141/622204. https://linkinghub.elsevier.com/retrieve/pii/S0016703715003634
Yokoyama, Tetsuya; Nagashima, Kazuhide; Nakai, Izumi; Young, Edward D.; Abe, Yoshinari; Aléon, Jérôme; Alexander, Conel M. O’D.; Amari, Sachiko; Amelin, Yuri; Bajo, Ken-ichi; Bizzarro, Martin; Bouvier, Audrey; Carlson, Richard W.; Chaussidon, Marc; Choi, Byeon-Gak (24 February 2023). "Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites". Science. 379 (6634): eabn7850. Bibcode:2023Sci...379.7850Y. doi:10.1126/science.abn7850. hdl:2115/90313. ISSN 0036-8075. PMID 35679354. https://www.science.org/doi/10.1126/science.abn7850
Folinsbee, R. E.; Douglas, J. A. V. (1967). "Revelstoke, a new Type I carbonaceous chondrite". Geochim. Cosmochim. Acta. 31 (10): 1625–35. Bibcode:1967GeCoA..31.1625F. doi:10.1016/0016-7037(67)90111-1. /wiki/Bibcode_(identifier)
Ikeda, Y. (1992). "An overview of the research consortium, "Antarctic carbonaceous chondrites with CI affinities, Yamato-86720, Yamato-82162, and Belgica-7904"". Proceedings, NIPR Symp. Antarctic Meteorites. 5: 49–73. Bibcode:1992AMR.....5...49I. /wiki/Bibcode_(identifier)
Wasson, J. T. (1974). Meteorites: Classification and Properties. Springer. ISBN 978-3-642-65865-5. 978-3-642-65865-5
Weisberg, M. K. (2006). Systematics and Evaluation of Meteorite Classification. Tucson: University of Arizona Press. p. 19. ISBN 9780816525621. 9780816525621
Hutchison, R. (2004). Meteorites: A Petrologic, Chemical, and Isotopic Synthesis. Cambridge: Cambridge University Press. ISBN 0-521-47010-2. 0-521-47010-2
King, A.J.; Solomon J.R.; Schofield P.F. (2015). "Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy". Earth, Planets and Space. 67: 198. Bibcode:2015EP&S...67..198K. doi:10.1186/s40623-015-0370-4. hdl:10141/622224. S2CID 2148318. https://doi.org/10.1186%2Fs40623-015-0370-4
King, A.J.; Schofield, P.F.; Howard, K.T.; Russell, S.S. (September 2015). "Modal mineralogy of CI and CI-like chondrites by X-ray diffraction". Geochimica et Cosmochimica Acta. 165: 148–160. Bibcode:2015GeCoA.165..148K. doi:10.1016/j.gca.2015.05.038. hdl:10141/622204. https://linkinghub.elsevier.com/retrieve/pii/S0016703715003634
MacLennan, Eric; Granvik, Mikael (2 November 2023). "Thermal decomposition as the activity driver of near-Earth asteroid (3200) Phaethon". Nature Astronomy. 8: 60–68. arXiv:2207.08968. doi:10.1038/s41550-023-02091-w. /wiki/ArXiv_(identifier)
Schrader, D. L.; Torrano, Z. A.; Foustoukos, D. I.; Alexander, C. M. O’D.; Render, J.; Brennecka, G. A. (2025). "Reassessing the proposed "CY chondrites": Evidence for multiple meteorite types and parent bodies from Cr-Ti-H-C-N isotopes and bulk elemental compositions". Geochim. Cosmochim. Acta. 390: 24–37. doi:10.1016/j.gca.2024.12.021. /wiki/Doi_(identifier)
Burton A. S.; Grunsfeld S.; Elsila J. E.; Glavin D. P.; Dworkin J. P. (2014). "The effects of parent-body hydrothermal heating on amino acid abundances in CI-like chondrites". Polar Science. 8 (3): 255. Bibcode:2014PolSc...8..255B. doi:10.1016/j.polar.2014.05.002. https://doi.org/10.1016%2Fj.polar.2014.05.002
Burton A. S.; Grunsfeld S.; Elsila J. E.; Glavin D. P.; Dworkin J. P. (2014). "The effects of parent-body hydrothermal heating on amino acid abundances in CI-like chondrites". Polar Science. 8 (3): 255. Bibcode:2014PolSc...8..255B. doi:10.1016/j.polar.2014.05.002. https://doi.org/10.1016%2Fj.polar.2014.05.002
Zolensky, M.; Barrett, R.; Browning, L. (1993). "Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites". Geochim. 57 (13): 3123−48. Bibcode:1993GeCoA..57.3123Z. doi:10.1016/0016-7037(93)90298-B. /wiki/Bibcode_(identifier)
Clayton, R. N.; Mayeda, T. K. (2001). Oxygen isotope composition of the Tagish Lake carbonaceous chondrite. Lunar and Planetary Sciences Conf. 32. p. 1885.
Bullock, E.S.; Gounelle, M.; Lauretta, D.S.; Grady, M.M.; Russell, S.S. (May 2005). "Mineralogy and texture of Fe-Ni sulfides in CI1 chondrites: Clues to the extent of aqueous alteration on the CI1 parent body". Geochimica et Cosmochimica Acta. 69 (10): 2687–2700. Bibcode:2005GeCoA..69.2687B. doi:10.1016/j.gca.2005.01.003. https://linkinghub.elsevier.com/retrieve/pii/S0016703705000426
Tonui, E. K.; Zolensky, M. E.; Lipschutz, M. E.; Wang, M.-S.; Nakamura, T. (2003). "Yamato 86029: Aqueously altered and thermally metamorphosed CI-like chondrite with unusual textures". Meteorit. Planet. Sci. 38 (2): 269−92. Bibcode:2003M&PS...38..269T. doi:10.1111/j.1945-5100.2003.tb00264.x. S2CID 56238044. https://doi.org/10.1111%2Fj.1945-5100.2003.tb00264.x
Nakamura, Tomoki (2005). "Post-hydration thermal metamorphism of carbonaceous chondrites". Journal of Mineralogical and Petrological Sciences. 100 (6): 260–272. Bibcode:2005JMPeS.100..260N. doi:10.2465/jmps.100.260. ISSN 1345-6296. http://www.jstage.jst.go.jp/article/jmps/100/6/100_6_260/_article
Tonui, Eric K.; Zolensky, Michael E.; Lipschutz, Michael E.; Wang, Ming-Sheng; Nakamura, Tomoki (February 2003). "Yamato 86029: Aqueously altered and thermally metamorphosed CI-like chondrite with unusual textures". Meteoritics & Planetary Science. 38 (2): 269–292. Bibcode:2003M&PS...38..269T. doi:10.1111/j.1945-5100.2003.tb00264.x. ISSN 1086-9379. https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2003.tb00264.x
Burton A. S.; Grunsfeld S.; Elsila J. E.; Glavin D. P.; Dworkin J. P. (2014). "The effects of parent-body hydrothermal heating on amino acid abundances in CI-like chondrites". Polar Science. 8 (3): 255. Bibcode:2014PolSc...8..255B. doi:10.1016/j.polar.2014.05.002. https://doi.org/10.1016%2Fj.polar.2014.05.002
"Oued Chebeika 002". Meteoritical Bulletin Database. Meteoritical Society. Retrieved 20 March 2025. https://www.lpi.usra.edu/meteor/metbull.php?sea=CI1&sfor=types&ants=&nwas=&falls=&valids=&stype=exact&lrec=50&map=ge&browse=&country=All&srt=&categ=All&mblist=All&rect=&phot=&strewn=&snew=0&pnt=Normal%20table&code=84012
Garvie, Laurence A.J.; Wittmann, Axel (10 March 2025). "Mineralogical Observations Of The Oued Chebeika 002 (CI1) Meteorite". 56th LPSC: 1802.
Mikouchi, T. (10 March 2025). "Mineralogy Of Oued Chebeika 002: A True CI1 Chondrite". 56th LPSC: 2021.
Sadaka, C. Gattacceca, J. Gounelle, M. Barrat, J.-A. Devouard, B. Bonal, L. King, A. Maurel, C. Beck, P. Poch, O. Viennet, J.-C. Roskosz, M. Grauby, O. AuYang, D. Borschneck, D. Tikoo, S. Vidal, V. Rochette, P. (10 March 2025). "Oued Chebeika 002: expanding the CI chondrite inventory". 56th LPSC: 2208.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Template:Cite_journal
Yokoyama, T. Nagashima, K. Nakai, I. Young, E. D. Abe, Y. Aléon, J. O'D. Alexander, C. M. Amari, S. Amelin, Y. Bajo, K. Bizzarro, M. Bouvier, A. Carlson, R. W. Chaussidon, M. and 135 others (10 June 2022). "Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites". Science. 379 (6634): 785. doi:10.1126/science.abn7850. hdl:2115/90313.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link) /wiki/Doi_(identifier)
Goodrich, C. A. (March 2023). "Ryugu and the Quest for Unaltered CI-Like Materials from the Early Solar System". LPSC 2023: 1446.
"Ryugu Reference Project". JAXA. Retrieved 20 March 2025. https://curation.isas.jaxa.jp/rrp/
Holweger, H. (1977). "The solar Na/Ca and S/Ca ratios: A close comparison with carbonaceous chondrites". Earth and Planetary Science Letters. 34 (1): 152−54. Bibcode:1977E&PSL..34..152H. doi:10.1016/0012-821X(77)90116-9. /wiki/Bibcode_(identifier)
Asplund, M.; Grevesse, N.; Sauval, A. J.; Scott, P. (2009). "The chemical composition of the Sun". Annual Review of Astronomy and Astrophysics. 47 (1): 481−522. arXiv:0909.0948. Bibcode:2009ARA&A..47..481A. doi:10.1146/annurev.astro.46.060407.145222. S2CID 17921922. /wiki/ArXiv_(identifier)
Palme, H.; Lodders, K.; Jones A. (2014). "Solar system abundances of the elements". In Davis, A. M. (ed.). Treatise on Geochemistry. Elsevier. pp. 15−36. /wiki/Katharina_Lodders
Arndt, P.; Bohsung, J.; Maetz, M.; Jessberger, E. K. (1996). "The elemental abundances in interplanetary dust particles". Meteoritics & Planetary Science. 31 (6): 817−33. Bibcode:1996M&PS...31..817A. doi:10.1111/j.1945-5100.1996.tb02116.x. /wiki/Bibcode_(identifier)
Lodders, K.; Fegley, B. Jr. (2011). Chemistry of the Solar System. Cambridge: RSC Publishing. ISBN 978-0-85404-128-2. 978-0-85404-128-2
Russell, S. S.; Suttle, M. D.; King, A. J. (2021). "Abundance and importance of petrological type 1 chondritic material". Meteorit Planet Sci. 57 (2): 277–301. doi:10.1111/maps.13753. S2CID 243853829. /wiki/Sara_Russell
Anders, E.; Grevesse, N. (1989). "Abundances of the elements: Meteoritic and solar". Geochim. Cosmochim. Acta. 53 (1): 197–214. Bibcode:1989GeCoA..53..197A. doi:10.1016/0016-7037(89)90286-X. S2CID 40797942. /wiki/Bibcode_(identifier)
Lodders, K.; Fegley, B. Jr. (1998). The Planetary Scientist's Companion. New York: Oxford University Press. ISBN 9780195116946. 9780195116946
Lewis, J. S. (2000). Comet and Asteroid Impact Hazards on a Populated Earth. San Diego: Academic Press. p. 50. ISBN 0-12-446760-1. 0-12-446760-1
Paquette, J. A.; Engrand, C.; Stenzel, O.; Hilchenbach, M.; Kissel, J.; et al. (2016). "Searching for calcium–aluminum-rich inclusions in cometary particles with Rosetta/COSIMA" (PDF). Meteorit Planet Sci. 51 (7): 1340−52. Bibcode:2016M&PS...51.1340P. doi:10.1111/maps.12669. S2CID 132170692. https://hal-insu.archives-ouvertes.fr/insu-01351380/file/maps.12669.pdf
Harkins, W. D. (1917). "The Evolution of the Elements and the Stability of Complex atoms. I. A new periodic system which shows a relation between the abundance of the elements and the structure of the nuclei of atoms". J. Am. Chem. Soc. 39 (5): 856. Bibcode:1917JAChS..39..856H. doi:10.1021/ja02250a002. https://zenodo.org/record/1429060
Morgan, J. W.; Anders, E. (1979). "Chemical composition of Mars". Geochim. Cosmochim. Acta. 43 (10): 1601−10. Bibcode:1979GeCoA..43.1601M. doi:10.1016/0016-7037(79)90180-7. /wiki/Bibcode_(identifier)
Dreibus, G.; Wanke, H. (1985). "Mars, a volatile-rich planet". Meteoritics. 20 (2): 367−81. Bibcode:1985Metic..20..367D. /wiki/Bibcode_(identifier)
Lodders, K.; Fegley, B. Jr. (1998). The Planetary Scientist's Companion. New York: Oxford University Press. ISBN 9780195116946. 9780195116946
Warren, P. H. (2011). "Stable-isotope anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for cabonaceous chondrites". Earth Planet. Sci. Lett. 311 (1): 93−100. Bibcode:2011E&PSL.311...93W. doi:10.1016/j.epsl.2011.08.047. /wiki/Bibcode_(identifier)
Palme, H.; Zipfel, J. (2021). "The composition of CI chondrites and their contents of chlorine and bromine: Results from instrumental neutron activation analysis". Meteorit. Planet. Sci. 57 (2): 317–333. doi:10.1111/maps.13720. S2CID 238805417. https://doi.org/10.1111%2Fmaps.13720
Goldschmidt, V. M. (1938). Skrifter Norske Videnskaps: Geochemische Verteilungsgesetze der Elemente. Oslo: Dybwad.
Goldschmidt, V. M. (1954). Geochemistry. Oxford: Clarendon Press.
Grevesse, N.; Sauval, J. (1998). "Standard Solar Composition". Space Science Reviews. 85: 161−74. Bibcode:1998SSRv...85..161G. doi:10.1023/A:1005161325181. S2CID 117750710. /wiki/Bibcode_(identifier)
Lodders, K.; Fegley, B. Jr. (2011). Chemistry of the Solar System. Cambridge: RSC Publishing. ISBN 978-0-85404-128-2. 978-0-85404-128-2
Anders, E. (1971). "How well do we know "Cosmic" abundances?". Geochim. Cosmochim. Acta. 35 (5): 516. Bibcode:1971GeCoA..35..516A. doi:10.1016/0016-7037(71)90048-2. /wiki/Bibcode_(identifier)
Asplund, M.; Grevesse, N.; Sauval, A. J.; Scott, P. (2009). "The Chemical Composition of the Sun". Annual Review of Astronomy and Astrophysics. 47 (1): 481−522. arXiv:0909.0948. Bibcode:2009ARA&A..47..481A. doi:10.1146/annurev.astro.46.060407.145222. S2CID 17921922. /wiki/ArXiv_(identifier)
Asplund, M.; Grevesse, N.; Sauval, A. J.; Scott, P. (2009). "The Chemical Composition of the Sun". Annual Review of Astronomy and Astrophysics. 47 (1): 481−522. arXiv:0909.0948. Bibcode:2009ARA&A..47..481A. doi:10.1146/annurev.astro.46.060407.145222. S2CID 17921922. /wiki/ArXiv_(identifier)
Anders, E.; Grevesse, N. (1989). "Abundances of the elements: Meteoritic and solar". Geochim. Cosmochim. Acta. 53 (1): 197–214. Bibcode:1989GeCoA..53..197A. doi:10.1016/0016-7037(89)90286-X. S2CID 40797942. /wiki/Bibcode_(identifier)
Lodders, K.; Fegley, B. Jr. (1998). The Planetary Scientist's Companion. New York: Oxford University Press. ISBN 9780195116946. 9780195116946
Grevesse, N.; Sauval, J. (1998). "Standard Solar Composition". Space Science Reviews. 85: 161−74. Bibcode:1998SSRv...85..161G. doi:10.1023/A:1005161325181. S2CID 117750710. /wiki/Bibcode_(identifier)
Warner, B. (1968). "The Abundance of Elements in the Solar Photosphere−IV The Iron Group". Mon. Not. R. Astron. Soc. 138: 229−43. doi:10.1093/mnras/138.2.229. https://doi.org/10.1093%2Fmnras%2F138.2.229
Kostik, R. I.; Shchukina, N. G.; Rutten, R. J. (1996). "The solar iron abundance: not the last word". Astron. Astrophys. 305: 325−42. Bibcode:1996A&A...305..325K. /wiki/Bibcode_(identifier)
Anders, E. (1971). "How well do we know "Cosmic" abundances?". Geochim. Cosmochim. Acta. 35 (5): 516. Bibcode:1971GeCoA..35..516A. doi:10.1016/0016-7037(71)90048-2. /wiki/Bibcode_(identifier)
Grevesse, N.; Sauval, A. J. (1999). "The solar abundance of iron and the photospheric model". Astron. Astrophys. 347: 348–54. Bibcode:1999A&A...347..348G. /wiki/Bibcode_(identifier)
Wieler, R.; Kehm, K.; Meshik, A. P.; Hohenberg, C. M. (1996). "Secular changes in the xenon and krypton abundances in the solar wind recorded in single lunar grains". Nature. 384 (6604): 46−49. Bibcode:1996Natur.384...46W. doi:10.1038/384046a0. S2CID 4247877. /wiki/Bibcode_(identifier)
Burnett, D. S.; Jurewicz, A. J. G.; Woolum, D. S. (2019). "The future of Genesis science". Meteorit. Planet. Sci. 54 (5): 1094−114. Bibcode:2019M&PS...54.1092B. doi:10.1111/maps.13266. PMC 6519397. PMID 31130804. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519397
Anders, E.; Ebihara, M. (1982). "Solar-system abundances of the elements". Geochim. Cosmochim. Acta. 46 (11): 2363−80. Bibcode:1982GeCoA..46.2363A. doi:10.1016/0016-7037(82)90208-3. /wiki/Bibcode_(identifier)
Grevesse, N.; Sauval, J. (1998). "Standard Solar Composition". Space Science Reviews. 85: 161−74. Bibcode:1998SSRv...85..161G. doi:10.1023/A:1005161325181. S2CID 117750710. /wiki/Bibcode_(identifier)
Asplund, M.; Grevesse, N.; Sauval, A. J.; Scott, P. (2009). "The Chemical Composition of the Sun". Annual Review of Astronomy and Astrophysics. 47 (1): 481−522. arXiv:0909.0948. Bibcode:2009ARA&A..47..481A. doi:10.1146/annurev.astro.46.060407.145222. S2CID 17921922. /wiki/ArXiv_(identifier)
Lodders, K.; Fegley, B. Jr. (2011). Chemistry of the Solar System. Cambridge: RSC Publishing. ISBN 978-0-85404-128-2. 978-0-85404-128-2
Ebihara, M.; Wolf, R.; Anders, E. (1982). "Are C1 chondrites chemically fractionated? A trace element study". Geochim. Cosmochim. Acta. 46 (10): 1849−62. Bibcode:1982GeCoA..46.1849E. doi:10.1016/0016-7037(82)90123-5. /wiki/Bibcode_(identifier)
Barrat, J. A.; Zanda, B.; Moynier, F.; Bollinger, C.; Liorzou, C.; Bayon, G. (2012). "Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes" (PDF). Geochim. Cosmochim. Acta. 83: 79−92. Bibcode:2012GeCoA..83...79B. doi:10.1016/j.gca.2011.12.011. S2CID 53528401. https://hal-insu.archives-ouvertes.fr/insu-00670053/file/GCA_W8592_manuscript_Tables_fig.pdf
Anders, E.; Ebihara, M. (1982). "Solar-system abundances of the elements". Geochim. Cosmochim. Acta. 46 (11): 2363−80. Bibcode:1982GeCoA..46.2363A. doi:10.1016/0016-7037(82)90208-3. /wiki/Bibcode_(identifier)
Anders, E.; Grevesse, N. (1989). "Abundances of the elements: Meteoritic and solar". Geochim. Cosmochim. Acta. 53 (1): 197–214. Bibcode:1989GeCoA..53..197A. doi:10.1016/0016-7037(89)90286-X. S2CID 40797942. /wiki/Bibcode_(identifier)
Burnett, D. S.; Woolum, D. S.; Benjamin, T. M.; Rogers, P. S. Z.; Duffy, C. J.; Maggiore, C. (1989). "A Test of the Smoothness of the Elemental Abundances of Carbonaceous Chondrites". Geochim. Cosmochim. Acta. 53 (2): 471. Bibcode:1989GeCoA..53..471B. doi:10.1016/0016-7037(89)90398-0. /wiki/Bibcode_(identifier)
Palme, H.; Zipfel, J. (2021). "The composition of CI chondrites and their contents of chlorine and bromine: Results from instrumental neutron activation analysis". Meteorit. Planet. Sci. 57 (2): 317–333. doi:10.1111/maps.13720. S2CID 238805417. https://doi.org/10.1111%2Fmaps.13720
Grevesse, N.; Sauval, J. (1998). "Standard Solar Composition". Space Science Reviews. 85: 161−74. Bibcode:1998SSRv...85..161G. doi:10.1023/A:1005161325181. S2CID 117750710. /wiki/Bibcode_(identifier)
Allende Prieto, C.; Lambert, D. L.; Asplund, M. (2001). "The Forbidden Abundance of Oxygen In The Sun". Astrophys. J. 556 (1): L63−66. arXiv:astro-ph/0106360. Bibcode:2001ApJ...556L..63A. doi:10.1086/322874. S2CID 15194372. /wiki/ArXiv_(identifier)
Lodders, K. (2003). "Solar system abundances and condensation temperatures of the elements". Astrophys. J. 591 (2): 1220−47. Bibcode:2003ApJ...591.1220L. doi:10.1086/375492. S2CID 42498829. /wiki/Katharina_Lodders
Lodders, K. (2003). "Solar system abundances and condensation temperatures of the elements". Astrophys. J. 591 (2): 1220−47. Bibcode:2003ApJ...591.1220L. doi:10.1086/375492. S2CID 42498829. /wiki/Katharina_Lodders
Allende Prieto, C. (2008). "The Abundances of Oxygen and Carbon in the Solar Photosphere". In van Belle, G. (ed.). 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun. Astronomical Society of the Pacific. ISBN 978-1-58381-331-7. 978-1-58381-331-7
Anders, E.; Ebihara, M. (1982). "Solar-system abundances of the elements". Geochim. Cosmochim. Acta. 46 (11): 2363−80. Bibcode:1982GeCoA..46.2363A. doi:10.1016/0016-7037(82)90208-3. /wiki/Bibcode_(identifier)
Buseck, P. Hua X. (1993). "Matrices Of Carbonaceous Chondrite Meteorites". Annual Review of Earth and Planetary Sciences. 21: 255–305. Bibcode:1993AREPS..21..255B. doi:10.1146/annurev.ea.21.050193.001351. /wiki/Bibcode_(identifier)
Asplund, M.; Amarsi, A. M.; Grevesse, N. (2021). "The chemical make-up of the Sun: A 2020 vision". Astron. Astrophys. 653: A141. arXiv:2105.01661. Bibcode:2021A&A...653A.141A. doi:10.1051/0004-6361/202140445. S2CID 233739900. /wiki/ArXiv_(identifier)
Kallemeyn, G. W.; Kerridge, J. F. (1983). "Kaidun: A new chondrite related to the CI group?". Meteoritics. 18 (4): 322.
Friedrich, J. M.; Wang, M.-S.; Lipschutz, M. E. (2002). "Comparison of the trace element composition of Tagish Lake with other primitive carbonaceous chondrites". Meteoritics & Planetary Science. 37 (5): 677–86. Bibcode:2002M&PS...37..677F. doi:10.1111/j.1945-5100.2002.tb00847.x. S2CID 129795199. https://doi.org/10.1111%2Fj.1945-5100.2002.tb00847.x
Brown, P. G.; Hildebrand, A. R.; Zolensky, M. E. (2002). "Tagish Lake". Meteoritics & Planetary Science. 37 (5): 619–21. Bibcode:2002M&PS...37..619B. doi:10.1111/j.1945-5100.2002.tb00843.x. S2CID 247666323. https://doi.org/10.1111%2Fj.1945-5100.2002.tb00843.x
Zolensky, M. E.; Nakamura, K.; Gounelle, M. (2002). "Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite". Meteoritics & Planetary Science. 37 (5): 737–61. Bibcode:2002M&PS...37..737Z. doi:10.1111/j.1945-5100.2002.tb00852.x. S2CID 128810727. /wiki/Bibcode_(identifier)
Mittlefehldt, D. W. (2002). "Geochemistry of the ungrouped carbonaceous chondrite Tagish Lake, the anomalous CM chondrite Bells, and comparison with CI and CM chondrites". Meteoritics & Planetary Science. 37 (5): 703–12. Bibcode:2002M&PS...37..703M. doi:10.1111/j.1945-5100.2002.tb00850.x. S2CID 127660178. https://doi.org/10.1111%2Fj.1945-5100.2002.tb00850.x
Grady, M. M.; Verchofsky, A. B.; Franchi, I. A. (2002). "Light element geochemistry of the Tagish Lake CI2 chondrite: Comparison with CI1 and CM2 meteorites". Meteoritics & Planetary Science. 37 (5): 713–35. Bibcode:2002M&PS...37..713G. doi:10.1111/j.1945-5100.2002.tb00851.x. S2CID 129629587. /wiki/Bibcode_(identifier)
Clayton, R. N.; Mayeda, T. K. (2001). Oxygen isotope composition of the Tagish Lake carbonaceous chondrite. Lunar and Planetary Sciences Conf. 32. p. 1885.
Engrand, C.; Gounelle, M.; Duprat, J; Zolensky, M. E. (2001). "In situ Oxygen Isotope Composition of Individual Minerals in Tagish Lake, A unique type 2 Carbonaceous Meteorite". Lunar and Planetary Sciences Conf. 32: 1568. Bibcode:2001LPI....32.1568E. /wiki/Bibcode_(identifier)
Ushikubo, T.; Kimura, M. (2020). "Oxygen-isotope systematics of chondrules and olivine fragments from Tagish Lake C2 chondrite: Implications of chondrule-forming regions in protoplanetary disk". Geochimica et Cosmochimica Acta. 293: 328–43. doi:10.1016/j.gca.2020.11.003. S2CID 228875252. https://doi.org/10.1016%2Fj.gca.2020.11.003
Ash, R. D.; Walker, R. J.; Puchtel, I. S.; McDonough, W. F.; Irving, A. J. (March 2011). The Trace Element Chemistry of Northwest Africa 5958, a Curious Primitive Carbonaceous Chondrite. 42nd LPSC. p. 2325.
Jacquet, E. (2016). "Northwest Africa 5958: A Weakly Altered CM-Related Ungrouped Chondrite, Not a CI3". Meteoritics & Planetary Science. 51 (5): 851–69. arXiv:1702.05955. Bibcode:2016M&PS...51..851J. doi:10.1111/maps.12628. S2CID 119423628. /wiki/ArXiv_(identifier)