A positive function f on the unit disk with f(0) = 1 is harmonic if and only if there is a probability measure μ on the unit circle such that
The formula clearly defines a positive harmonic function with f(0) = 1.
Conversely if f is positive and harmonic and rn increases to 1, define
Then
where
is a probability measure.
By a compactness argument (or equivalently in this case Helly's selection theorem for Stieltjes integrals), a subsequence of these probability measures has a weak limit which is also a probability measure μ.
Since rn increases to 1, so that fn(z) tends to f(z), the Herglotz formula follows.
A holomorphic function f on the unit disk with f(0) = 1 has positive real part if and only if there is a probability measure μ on the unit circle such that
This follows from the previous theorem because:
Let
be a holomorphic function on the unit disk. Then f(z) has positive real part on the disk if and only if
for any complex numbers λ0, λ1, ..., λN, where
for m > 0.
In fact from the Herglotz representation for n > 0
Hence
Conversely, setting λn = zn,