Suppose we have a quantum state which is described by a density operator σ {\displaystyle \sigma } and a quantum channel E {\displaystyle {\mathcal {E}}} , the Petz recovery map is defined as67
Notice that E † {\displaystyle {\mathcal {E}}^{\dagger }} is the Hilbert-Schmidt adjoint of E {\displaystyle {\mathcal {E}}} .
The Petz map has been generalized in various ways in the field of quantum information theory.89
A crucial property of the Petz recovery map is its ability to function as a quantum channel in certain cases, making it an essential tool in quantum information theory.
Tr [ P σ , N ( X ) ] = Tr [ σ 1 2 E † ( E ( σ ) − 1 2 X E ( σ ) − 1 2 ) σ 1 2 ] = Tr [ σ E † ( E ( σ ) − 1 2 X E ( σ ) − 1 2 ) ] = Tr [ E ( σ ) E ( σ ) − 1 2 X E ( σ ) − 1 2 ] = Tr [ E ( σ ) − 1 2 E ( σ ) E ( σ ) − 1 2 X ] = Tr [ Π E ( σ ) X ] ≤ Tr [ X ] {\displaystyle {\begin{aligned}\operatorname {Tr} \left[{\mathcal {P}}_{\sigma ,{\mathcal {N}}}(X)\right]&=\operatorname {Tr} \left[\sigma ^{\frac {1}{2}}{\mathcal {E}}^{\dagger }\left({\mathcal {E}}(\sigma )^{-{\frac {1}{2}}}X{\mathcal {E}}(\sigma )^{-{\frac {1}{2}}}\right)\sigma ^{\frac {1}{2}}\right]\\&=\operatorname {Tr} \left[\sigma {\mathcal {E}}^{\dagger }\left({\mathcal {E}}(\sigma )^{-{\frac {1}{2}}}X{\mathcal {E}}(\sigma )^{-{\frac {1}{2}}}\right)\right]\\&=\operatorname {Tr} \left[{\mathcal {E}}(\sigma ){\mathcal {E}}(\sigma )^{-{\frac {1}{2}}}X{\mathcal {E}}(\sigma )^{-{\frac {1}{2}}}\right]\\&=\operatorname {Tr} \left[{\mathcal {E}}(\sigma )^{-{\frac {1}{2}}}{\mathcal {E}}(\sigma ){\mathcal {E}}(\sigma )^{-{\frac {1}{2}}}X\right]\\&=\operatorname {Tr} \left[\Pi _{{\mathcal {E}}(\sigma )}X\right]\\&\leq \operatorname {Tr} [X]\end{aligned}}}
From 1 and 2, when E ( σ ) {\displaystyle {\mathcal {E}}(\sigma )} is invertible, the Petz recovery map P σ , E {\displaystyle {\mathcal {P}}_{\sigma ,{\mathcal {E}}}} is a quantum channel, viz., a completely positive trace-preserving (CPTP) map.
Petz, Dénes (1986-03-01). "Sufficient subalgebras and the relative entropy of states of a von Neumann algebra" (PDF). Communications in Mathematical Physics. 105 (1): 123–131. Bibcode:1986CMaPh.105..123P. doi:10.1007/BF01212345. ISSN 1432-0916. S2CID 18836173. https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-105/issue-1/Sufficient-subalgebras-and-the-relative-entropy-of-states-of-a/cmp/1104115260.pdf ↩
Leifer, M. S.; Spekkens, Robert W. (2013-11-27). "Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference". Physical Review A. 88 (5): 052130. arXiv:1107.5849. Bibcode:2013PhRvA..88e2130L. doi:10.1103/PhysRevA.88.052130. S2CID 43563970. https://link.aps.org/doi/10.1103/PhysRevA.88.052130 ↩
Furuya, Keiichiro; Lashkari, Nima; Ouseph, Shoy (2022-01-27). "Real-space RG, error correction and Petz map". Journal of High Energy Physics. 2022 (1): 170. arXiv:2012.14001. Bibcode:2022JHEP...01..170F. doi:10.1007/JHEP01(2022)170. ISSN 1029-8479. https://doi.org/10.1007/JHEP01(2022)170 ↩
Chen, Chi-Fang; Penington, Geoffrey; Salton, Grant (2020-01-28). "Entanglement wedge reconstruction using the Petz map". Journal of High Energy Physics. 2020 (1): 168. arXiv:1902.02844. Bibcode:2020JHEP...01..168C. doi:10.1007/JHEP01(2020)168. ISSN 1029-8479. https://doi.org/10.1007/JHEP01(2020)168 ↩
Cotler, Jordan; Hayden, Patrick; Penington, Geoffrey; Salton, Grant; Swingle, Brian; Walter, Michael (2019-07-24). "Entanglement Wedge Reconstruction via Universal Recovery Channels". Physical Review X. 9 (3): 031011. arXiv:1704.05839. Bibcode:2019PhRvX...9c1011C. doi:10.1103/PhysRevX.9.031011. https://link.aps.org/doi/10.1103/PhysRevX.9.031011 ↩
Khatri, Sumeet; Wilde, Mark M. (2024-02-11), Principles of Quantum Communication Theory: A Modern Approach, arXiv:2011.04672 /wiki/ArXiv_(identifier) ↩
Junge, Marius; Renner, Renato; Sutter, David; Wilde, Mark M.; Winter, Andreas (2016). Universal recoverability in quantum information. pp. 2494–2498. doi:10.1109/ISIT.2016.7541748. hdl:20.500.11850/120060. ISBN 978-1-5090-1806-2. S2CID 18189775. Retrieved 2024-01-03. 978-1-5090-1806-2 ↩
Cree, Sam; Sorce, Jonathan (2022-06-01). "Approximate Petz Recovery from the Geometry of Density Operators". Communications in Mathematical Physics. 392 (3): 907–919. arXiv:2108.10893. Bibcode:2022CMaPh.392..907C. doi:10.1007/s00220-022-04357-2. ISSN 1432-0916. S2CID 237292763. https://doi.org/10.1007/s00220-022-04357-2 ↩