Parameter space contributed to the liberation of geometry from the confines of three-dimensional space. For instance, the parameter space of spheres in three dimensions, has four dimensions—three for the sphere center and another for the radius. According to Dirk Struik, it was the book Neue Geometrie des Raumes (1849) by Julius Plücker that showed
The requirement for higher dimensions is illustrated by Plücker's line geometry. Struik writes
Thus the Klein quadric describes the parameters of lines in space.
Hayashi, Fumio (2000). Econometrics. Princeton University Press. p. 446. ISBN 0-691-01018-8. 0-691-01018-8 ↩
Gasperino, J.; Rom, W. N. (2004). "Gender and lung cancer". Clinical Lung Cancer. 5 (6): 353–359. doi:10.3816/CLC.2004.n.013. PMID 15217534. /wiki/Doi_(identifier) ↩
Navon, Aviv; Shamsian, Aviv; Achituve, Idan; Fetaya, Ethan; Chechik, Gal; Maron, Haggai (2023-07-03). "Equivariant Architectures for Learning in Deep Weight Spaces". Proceedings of the 40th International Conference on Machine Learning. PMLR: 25790–25816. arXiv:2301.12780. https://proceedings.mlr.press/v202/navon23a.html ↩
Hecht-Nielsen, Robert (1990-01-01), Eckmiller, Rolf (ed.), "ON THE ALGEBRAIC STRUCTURE OF FEEDFORWARD NETWORK WEIGHT SPACES", Advanced Neural Computers, Amsterdam: North-Holland, pp. 129–135, ISBN 978-0-444-88400-8, retrieved 2023-12-01 978-0-444-88400-8 ↩
Dirk Struik (1967) A Concise History of Mathematics, 3rd edition, Dover Books /wiki/Dirk_Struik ↩