In the context of symplectic manifolds, the meaning of "aspherical" is a little bit different. Specifically, we say that a symplectic manifold (M,ω) is symplectically aspherical if and only if
for every continuous mapping
where c 1 ( T M ) {\displaystyle c_{1}(TM)} denotes the first Chern class of an almost complex structure which is compatible with ω.
By Stokes' theorem, we see that symplectic manifolds which are aspherical are also symplectically aspherical manifolds. However, there do exist symplectically aspherical manifolds which are not aspherical spaces.1
Some references2 drop the requirement on c1 in their definition of "symplectically aspherical." However, it is more common for symplectic manifolds satisfying only this weaker condition to be called "weakly exact."
Gompf, Robert E. (1998). "Symplectically aspherical manifolds with nontrivial π2". Mathematical Research Letters. 5 (5): 599–603. arXiv:math/9808063. CiteSeerX 10.1.1.235.9135. doi:10.4310/MRL.1998.v5.n5.a4. MR 1666848. S2CID 15738108. /wiki/Robert_Gompf ↩
Kedra, Jarek; Rudyak, Yuli; Tralle, Aleksey (2008). "Symplectically aspherical manifolds". Journal of Fixed Point Theory and Applications. 3: 1–21. arXiv:0709.1799. CiteSeerX 10.1.1.245.455. doi:10.1007/s11784-007-0048-z. MR 2402905. S2CID 13630163. /wiki/Yuli_Rudyak ↩