The RecA protein binds strongly and in long clusters to ssDNA to form a nucleoprotein filament. The protein has multiple DNA binding sites, and thus can hold a single strand and double strand together. This feature makes it possible to catalyze a DNA synapsis reaction between a DNA double helix and a complementary region of single-stranded DNA. The RecA-ssDNA filament searches for sequence similarity along the dsDNA. A disordered DNA loop in RecA, Loop 2, contains the residues responsible for DNA homologous recombination. In some bacteria, RecA posttranslational modification via phosphorylation of a serine residue on Loop 2 can interfere with homologous recombination.
There are multiple proposed models for how RecA finds complementary DNA. In one model, termed conformational proofreading, the DNA duplex is stretched, which enhances sequence complementarity recognition. The reaction initiates the exchange of strands between two recombining DNA double helices. After the synapsis event, in the heteroduplex region a process called branch migration begins. In branch migration an unpaired region of one of the single strands displaces a paired region of the other single strand, moving the branch point without changing the total number of base pairs. Spontaneous branch migration can occur, however, as it generally proceeds equally in both directions it is unlikely to complete recombination efficiently. The RecA protein catalyzes unidirectional branch migration and by doing so makes it possible to complete recombination, producing a region of heteroduplex DNA that is thousands of base pairs long.
Horii, T; Ogawa, T; Ogawa, H (January 1980). "Organization of the recA gene of Escherichia coli". Proceedings of the National Academy of Sciences. 77 (1): 313–317. Bibcode:1980PNAS...77..313H. doi:10.1073/pnas.77.1.313. PMC 348260. PMID 6244554. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC348260
Lin, Zhenguo; Kong, Hongzhi; Nei, Masatoshi; Ma, Hong (5 July 2006). "Origins and evolution of the recA / RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer". Proceedings of the National Academy of Sciences. 103 (27): 10328–10333. Bibcode:2006PNAS..10310328L. doi:10.1073/pnas.0604232103. PMC 1502457. PMID 16798872. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1502457
Brendel, Volker; Brocchieri, Luciano; Sandler, Steven J.; Clark, Alvin J.; Karlin, Samuel (May 1997). "Evolutionary Comparisons of RecA-Like Proteins Across All Major Kingdoms of Living Organisms". Journal of Molecular Evolution. 44 (5): 528–541. doi:10.1007/pl00006177. PMID 9115177. /wiki/Doi_(identifier)
Shinohara, Akira; Ogawa, Hideyuki; Ogawa, Tomoko (1992). "Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein". Cell. 69 (3): 457–470. doi:10.1016/0092-8674(92)90447-k. PMID 1581961. S2CID 35937283. /wiki/Doi_(identifier)
Seitz, Erica M.; Brockman, Joel P.; Sandler, Steven J.; Clark, A. John; Kowalczykowski, Stephen C. (May 1998). "RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange". Genes & Development. 12 (9): 1248–1253. doi:10.1101/gad.12.9.1248. ISSN 0890-9369. PMC 316774. PMID 9573041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC316774
Horii, Toshihiro; Ogawa, Tomoko; Nakatani, Tomoyuki; Hase, Toshiharu; Matsubara, Hiroshi; Ogawa, Hideyuki (December 1981). "Regulation of SOS functions: Purification of E. coli LexA protein and determination of its specific site cleaved by the RecA protein". Cell. 27 (3): 515–522. doi:10.1016/0092-8674(81)90393-7. PMID 6101204. S2CID 45482725. /wiki/Doi_(identifier)
Little, John W. (March 1984). "Autodigestion of lexA and phage lambda repressors". Proceedings of the National Academy of Sciences. 81 (5): 1375–1379. Bibcode:1984PNAS...81.1375L. doi:10.1073/pnas.81.5.1375. PMC 344836. PMID 6231641. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC344836
Henkin, Tina M.; Peters, Joseph E.; Snyder, Larry; Champness, Wendy (2020). Snyder & Champness molecular genetics of bacteria (Fifth ed.). Hoboken, NJ: Wiley. pp. 368–371. ISBN 9781555819750. 9781555819750
Maraboeuf, Fabrice; Voloshin, Oleg; Camerini-Otero, R. Daniel; Takahashi, Masayuki (December 1995). "The Central Aromatic Residue in Loop L2 of RecA Interacts with DNA". Journal of Biological Chemistry. 270 (52): 30927–30932. doi:10.1074/jbc.270.52.30927. PMID 8537348. https://doi.org/10.1074%2Fjbc.270.52.30927
Wipperman, Matthew F.; Heaton, Brook E.; Nautiyal, Astha; Adefisayo, Oyindamola; Evans, Henry; Gupta, Richa; van Ditmarsch, Dave; Soni, Rajesh; Hendrickson, Ron; Johnson, Jeff; Krogan, Nevan; Glickman, Michael S. (October 2018). "Mycobacterial Mutagenesis and Drug Resistance Are Controlled by Phosphorylation- and Cardiolipin-Mediated Inhibition of the RecA Coprotease". Molecular Cell. 72 (1): 152–161.e7. doi:10.1016/j.molcel.2018.07.037. PMC 6389330. PMID 30174294. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389330
Henkin, Tina M.; Peters, Joseph E.; Snyder, Larry; Champness, Wendy (2020). Snyder & Champness molecular genetics of bacteria (Fifth ed.). Hoboken, NJ: Wiley. pp. 368–371. ISBN 9781555819750. 9781555819750
Savir, Yonatan; Tlusty, Tsvi (November 2010). "RecA-Mediated Homology Search as a Nearly Optimal Signal Detection System". Molecular Cell. 40 (3): 388–396. arXiv:1011.4382. doi:10.1016/j.molcel.2010.10.020. PMID 21070965. S2CID 1682936. https://doi.org/10.1016%2Fj.molcel.2010.10.020
De Vlaminck, Iwijn; van Loenhout, Marjin T.J.; Zweifel, Ludovit; den Blanken, Johan; Hooning, Koen; Hage, Susanne; Kerssemakers, Jacob; Dekker, Cees (June 2012). "Mechanism of Homology Recognition in DNA Recombination from Dual-Molecule Experiments". Molecular Cell. 46 (5): 616–624. doi:10.1016/j.molcel.2012.03.029. PMID 22560720. https://doi.org/10.1016%2Fj.molcel.2012.03.029
Reitz, Diedre; Chan, Yuen-Ling; Bishop, Douglas K (December 2021). "How strand exchange protein function benefits from ATP hydrolysis". Current Opinion in Genetics & Development. 71: 120–128. doi:10.1016/j.gde.2021.06.016. PMC 8671154. PMID 34343922. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8671154
Lesterlin, Christian; Ball, Graeme; Schermelleh, Lothar; Sherratt, David J. (13 February 2014). "RecA bundles mediate homology pairing between distant sisters during DNA break repair". Nature. 506 (7487): 249–253. Bibcode:2014Natur.506..249L. doi:10.1038/nature12868. PMC 3925069. PMID 24362571. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925069
Henkin, Tina M.; Peters, Joseph E.; Snyder, Larry; Champness, Wendy (2020). Snyder & Champness molecular genetics of bacteria (Fifth ed.). Hoboken, NJ: Wiley. p. 259. ISBN 9781555819750. 9781555819750
Akamatsu, Takashi; Taguchi, Hisataka (January 2001). "Incorporation of the Whole Chromosomal DNA in Protoplast Lysates into Competent Cells of Bacillus subtilis". Bioscience, Biotechnology, and Biochemistry. 65 (4): 823–829. doi:10.1271/bbb.65.823. PMID 11388459. S2CID 30118947. https://doi.org/10.1271%2Fbbb.65.823
Saito, Yukiko; Taguchi, Hisataka; Akamatsu, Takashi (March 2006). "Fate of transforming bacterial genome following incorporation into competent cells of Bacillus subtilis: a continuous length of incorporated DNA". Journal of Bioscience and Bioengineering. 101 (3): 257–262. doi:10.1263/jbb.101.257. PMID 16716928. /wiki/Doi_(identifier)
Culyba, Matthew J.; Mo, Charlie Y.; Kohli, Rahul M. (16 June 2015). "Targets for Combating the Evolution of Acquired Antibiotic Resistance". Biochemistry. 54 (23): 3573–3582. doi:10.1021/acs.biochem.5b00109. PMC 4471857. PMID 26016604. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471857
Merrikh, Houra; Kohli, Rahul M. (October 2020). "Targeting evolution to inhibit antibiotic resistance". The FEBS Journal. 287 (20): 4341–4353. doi:10.1111/febs.15370. ISSN 1742-464X. PMC 7578009. PMID 32434280. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578009
Wigle, Tim J.; Singleton, Scott F. (June 2007). "Directed molecular screening for RecA ATPase inhibitors". Bioorganic & Medicinal Chemistry Letters. 17 (12): 3249–3253. doi:10.1016/j.bmcl.2007.04.013. PMC 1933586. PMID 17499507. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1933586
Culyba, Matthew J.; Mo, Charlie Y.; Kohli, Rahul M. (16 June 2015). "Targets for Combating the Evolution of Acquired Antibiotic Resistance". Biochemistry. 54 (23): 3573–3582. doi:10.1021/acs.biochem.5b00109. PMC 4471857. PMID 26016604. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471857