Schlimmer, J. C., & Fisher, D. A case study of incremental concept induction. Fifth National Conference on Artificial Intelligence, 496-501. Philadelphia, 1986 https://www.researchgate.net/profile/Doug_Fisher2/publication/221603307_A_Case_Study_of_Incremental_Concept_Induction/links/555b1fc608ae980ca6122e64.pdf
Utgoff, P. E., Incremental induction of decision trees. Machine Learning, 4(2): 161-186, 1989 http://people.cs.umass.edu/~utgoff/papers/mlj-id5r.pdf
Ferrer-Troyano, Francisco, Jesus S. Aguilar-Ruiz, and Jose C. Riquelme. Incremental rule learning based on example nearness from numerical data streams. Proceedings of the 2005 ACM symposium on Applied computing. ACM, 2005 https://idus.us.es/xmlui/bitstream/handle/11441/39713/Incremental%20rule.pdf?sequence=4&isAllowed=y
Bruzzone, Lorenzo, and D. Fernàndez Prieto. An incremental-learning neural network for the classification of remote-sensing images. Pattern Recognition Letters: 1241-1248, 1999 https://rslab.disi.unitn.it/papers/R12-PRL-1999-11-13.pdf
R. Polikar, L. Udpa, S. Udpa, V. Honavar. Learn++: An incremental learning algorithm for supervised neural networks. IEEE Transactions on Systems, Man, and Cybernetics. Rowan University USA, 2001. /wiki/Lalita_Udpa
G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, D. Rosen. Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE transactions on neural networks, 1992 http://open.bu.edu/bitstream/handle/2144/2071/91.016.pdf?sequence=1
Marko Tscherepanow, Marco Kortkamp, and Marc Kammer. A Hierarchical ART Network for the Stable Incremental Learning of Topological Structures and Associations from Noisy Data Archived 2017-08-10 at the Wayback Machine. Neural Networks, 24(8): 906-916, 2011 http://aiweb.techfak.uni-bielefeld.de/files/tscherepanow.marko2011ahierarchical-nn-r1.pdf
Jean-Charles Lamirel, Zied Boulila, Maha Ghribi, and Pascal Cuxac. A New Incremental Growing Neural Gas Algorithm Based on Clusters Labeling Maximization: Application to Clustering of Heterogeneous Textual Data. IEA/AIE 2010: Trends in Applied Intelligent Systems, 139-148, 2010 https://www.researchgate.net/profile/Pascal_Cuxac/publication/47760684_A_new_incremental_neural_clustering_approach_for_performing_reliable_large_scope_scientometrics_analysis/links/58dbbb2c458515152b23f075/A-new-incremental-neural-clustering-approach-for-performing-reliable-large-scope-scientometrics-analysis.pdf
Diehl, Christopher P., and Gert Cauwenberghs. SVM incremental learning, adaptation and optimization Archived 2017-12-15 at the Wayback Machine. Neural Networks, 2003. Proceedings of the International Joint Conference on. Vol. 4. IEEE, 2003. http://www.isn.ucsd.edu/pubs/ijcnn03_inc.pdf
Carpenter, G.A., Grossberg, S., & Rosen, D.B., Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system, Neural Networks, 4(6): 759-771, 1991 http://dcommon.bu.edu/bitstream/handle/2144/2070/91.015.pdf?sequence=1&isAllowed=y
Marko Tscherepanow, Marco Kortkamp, and Marc Kammer. A Hierarchical ART Network for the Stable Incremental Learning of Topological Structures and Associations from Noisy Data Archived 2017-08-10 at the Wayback Machine. Neural Networks, 24(8): 906-916, 2011 http://aiweb.techfak.uni-bielefeld.de/files/tscherepanow.marko2011ahierarchical-nn-r1.pdf