For elliptic orbits, the true anomaly ν can be calculated from orbital state vectors as:
where:
For circular orbits the true anomaly is undefined, because circular orbits do not have a uniquely determined periapsis. Instead the argument of latitude u is used:
For circular orbits with zero inclination the argument of latitude is also undefined, because there is no uniquely determined line of nodes. One uses the true longitude instead:
The relation between the true anomaly ν and the eccentric anomaly E {\displaystyle E} is:
or using the sine1 and tangent:
or equivalently:
so
Alternatively, a form of this equation was derived by 2 that avoids numerical issues when the arguments are near ± π {\displaystyle \pm \pi } , as the two tangents become infinite. Additionally, since E 2 {\displaystyle {\frac {E}{2}}} and ν 2 {\displaystyle {\frac {\nu }{2}}} are always in the same quadrant, there will not be any sign problems.
The true anomaly can be calculated directly from the mean anomaly M {\displaystyle M} via a Fourier expansion:3
with Bessel functions J n {\displaystyle J_{n}} and parameter β = 1 − 1 − e 2 e {\displaystyle \beta ={\frac {1-{\sqrt {1-e^{2}}}}{e}}} .
Omitting all terms of order e 4 {\displaystyle e^{4}} or higher (indicated by O ( e 4 ) {\displaystyle \operatorname {\mathcal {O}} \left(e^{4}\right)} ), it can be written as456
Note that for reasons of accuracy this approximation is usually limited to orbits where the eccentricity e {\displaystyle e} is small.
The expression ν − M {\displaystyle \nu -M} is known as the equation of the center, where more details about the expansion are given.
The radius (distance between the focus of attraction and the orbiting body) is related to the true anomaly by the formula
where a is the orbit's semi-major axis.
In celestial mechanics, Projective anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between the direction of periapsis and the current position of the body in the projective space.
The projective anomaly is usually denoted by the θ {\displaystyle \theta } and is usually restricted to the range 0 - 360 degree (0 - 2 π {\displaystyle \pi } radian).
The projective anomaly θ {\displaystyle \theta } is one of four angular parameters (anomalies) that defines a position along an orbit, the other two being the eccentric anomaly, true anomaly and the mean anomaly.
In the projective geometry, circle, ellipse, parabolla, hyperbolla are treated as a same kind of quadratic curves.
An orbit type is classified by two project parameters α {\displaystyle \alpha } and β {\displaystyle \beta } as follows,
where
α = ( 1 + e ) ( q − p ) + ( 1 + e ) 2 ( q + p ) 2 + 4 e 2 2 {\displaystyle \alpha ={\frac {(1+e)(q-p)+{\sqrt {(1+e)^{2}(q+p)^{2}+4e^{2}}}}{2}}}
β = 2 e ( 1 + e ) ( q + p ) + ( 1 + e ) 2 ( q + p ) 2 + 4 e 2 {\displaystyle \beta ={\frac {2e}{(1+e)(q+p)+{\sqrt {(1+e)^{2}(q+p)^{2}+4e^{2}}}}}}
q = ( 1 − e ) a {\displaystyle q=(1-e)a}
p = 1 Q = 1 ( 1 + e ) a {\displaystyle p={\frac {1}{Q}}={\frac {1}{(1+e)a}}}
where α {\displaystyle \alpha } is semi major axis, e {\displaystyle e} is eccentricity, q {\displaystyle q} is perihelion distance、 Q {\displaystyle Q} is aphelion distance.
Position and heliocentric distance of the planet x {\displaystyle x} , y {\displaystyle y} and r {\displaystyle r} can be calculated as functions of the projective anomaly θ {\displaystyle \theta } :
x = − β + α cos θ 1 + α β cos θ {\displaystyle x={\frac {-\beta +\alpha \cos \theta }{1+\alpha \beta \cos \theta }}}
y = α 2 − β 2 sin θ 1 + α β cos θ {\displaystyle y={\frac {{\sqrt {\alpha ^{2}-\beta ^{2}}}\sin \theta }{1+\alpha \beta \cos \theta }}}
r = α − β cos θ 1 + α β cos θ {\displaystyle r={\frac {\alpha -\beta \cos \theta }{1+\alpha \beta \cos \theta }}}
The projective anomaly θ {\displaystyle \theta } can be calculated from the eccentric anomaly u {\displaystyle u} as follows,
tan θ 2 = 1 + α β 1 − α β tan u 2 {\displaystyle \tan {\frac {\theta }{2}}={\sqrt {\frac {1+\alpha \beta }{1-\alpha \beta }}}\tan {\frac {u}{2}}}
u − e sin u = M = ( 1 − α 2 β 2 α ( 1 + β 2 ) ) 3 / 2 k ( t − T 0 ) {\displaystyle u-e\sin u=M=\left({\frac {1-\alpha ^{2}\beta ^{2}}{\alpha (1+\beta ^{2})}}\right)^{3/2}k(t-T_{0})}
s 3 3 + α 2 − 1 α 2 + 1 s = 2 k ( t − T 0 ) α ( α 2 + 1 ) 3 {\displaystyle {\frac {s^{3}}{3}}+{\frac {\alpha ^{2}-1}{\alpha ^{2}+1}}s={\frac {2k(t-T_{0})}{\sqrt {\alpha (\alpha ^{2}+1)^{3}}}}}
s = tan θ 2 {\displaystyle s=\tan {\frac {\theta }{2}}}
tan θ 2 = α β + 1 α β − 1 tanh u 2 {\displaystyle \tan {\frac {\theta }{2}}={\sqrt {\frac {\alpha \beta +1}{\alpha \beta -1}}}\tanh {\frac {u}{2}}}
e sinh u − u = M = ( α 2 β 2 − 1 α ( 1 + β 2 ) ) 3 / 2 k ( t − T 0 ) {\displaystyle e\sinh u-u=M=\left({\frac {\alpha ^{2}\beta ^{2}-1}{\alpha (1+\beta ^{2})}}\right)^{3/2}k(t-T_{0})}
The above equations are called Kepler's equation.
For arbitrary constant λ {\displaystyle \lambda } , the generalized anomaly Θ {\displaystyle \Theta } is related as
tan Θ 2 = λ tan u 2 {\displaystyle \tan {\frac {\Theta }{2}}=\lambda \tan {\frac {u}{2}}}
The eccentric anomaly, the true anomaly, and the projective anomaly are the cases of λ = 1 {\displaystyle \lambda =1} , λ = 1 + e 1 − e {\displaystyle \lambda ={\sqrt {\frac {1+e}{1-e}}}} , λ = 1 + α β 1 − α β {\displaystyle \lambda ={\sqrt {\frac {1+\alpha \beta }{1-\alpha \beta }}}} , respectively.
Fundamentals of Astrodynamics and Applications by David A. Vallado ↩
Broucke, R.; Cefola, P. (1973). "A Note on the Relations between True and Eccentric Anomalies in the Two-Body Problem". Celestial Mechanics. 7 (3): 388–389. Bibcode:1973CeMec...7..388B. doi:10.1007/BF01227859. ISSN 0008-8714. S2CID 122878026. https://ui.adsabs.harvard.edu/abs/1973CeMec...7..388B/abstract ↩
Battin, R.H. (1999). An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series. American Institute of Aeronautics & Astronautics. p. 212 (Eq. (5.32)). ISBN 978-1-60086-026-3. Retrieved 2022-08-02. 978-1-60086-026-3 ↩
Smart, W. M. (1977). Textbook on Spherical Astronomy (PDF). p. 120 (Eq. (87)). Bibcode:1977tsa..book.....S. https://wangsajaya.files.wordpress.com/2015/02/textbook-on-spherical-astronomy-smart-6ed-1977.pdf ↩
Roy, A.E. (2005). Orbital Motion (4 ed.). Bristol, UK; Philadelphia, PA: Institute of Physics (IoP). p. 78 (Eq. (4.65)). Bibcode:2005ormo.book.....R. ISBN 0750310154. Archived from the original on 2021-05-15. Retrieved 2020-08-29. 0750310154 ↩