System | Hamiltonian | Energy | Remarks |
---|
Two-state quantum system | α I + r σ ^ {\displaystyle \alpha I+\mathbf {r} {\hat {\mathbf {\sigma } }}\,} | α ± | r | {\displaystyle \alpha \pm |\mathbf {r} |\,} | |
Free particle | − ℏ 2 ∇ 2 2 m {\displaystyle -{\frac {\hbar ^{2}\nabla ^{2}}{2m}}\,} | ℏ 2 k 2 2 m , k ∈ R d {\displaystyle {\frac {\hbar ^{2}\mathbf {k} ^{2}}{2m}},\,\,\mathbf {k} \in \mathbb {R} ^{d}} | Massive quantum free particle |
Delta potential | − ℏ 2 2 m d 2 d x 2 + λ δ ( x ) {\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}+\lambda \delta (x)} | − m λ 2 2 ℏ 2 {\displaystyle -{\frac {m\lambda ^{2}}{2\hbar ^{2}}}} | Bound state |
Symmetric double-well Dirac delta potential | − ℏ 2 2 m d 2 d x 2 + λ ( δ ( x − R 2 ) + δ ( x + R 2 ) ) {\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}+\lambda \left(\delta \left(x-{\frac {R}{2}}\right)+\delta \left(x+{\frac {R}{2}}\right)\right)} | − 1 2 R 2 ( λ R + W ( ± λ R e − λ R ) ) 2 {\displaystyle -{\frac {1}{2R^{2}}}\left(\lambda R+W\left(\pm \lambda R\,e^{-\lambda R}\right)\right)^{2}} | ℏ = m = 1 {\displaystyle \hbar =m=1} , W is Lambert W function, for non-symmetric potential see here |
Particle in a box | − ℏ 2 2 m d 2 d x 2 + V ( x ) {\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}+V(x)} V ( x ) = { 0 , 0 < x < L , ∞ , otherwise {\displaystyle V(x)={\begin{cases}0,&0<x<L,\\\infty ,&{\text{otherwise}}\end{cases}}} | π 2 ℏ 2 n 2 2 m L 2 , n = 1 , 2 , 3 , … {\displaystyle {\frac {\pi ^{2}\hbar ^{2}n^{2}}{2mL^{2}}},\,\,n=1,2,3,\ldots } | for higher dimensions see here |
Particle in a ring | − ℏ 2 2 m R 2 d 2 d θ 2 {\displaystyle -{\frac {\hbar ^{2}}{2mR^{2}}}{\frac {d^{2}}{d\theta ^{2}}}\,} | ℏ 2 n 2 2 m R 2 , n = 0 , ± 1 , ± 2 , … {\displaystyle {\frac {\hbar ^{2}n^{2}}{2mR^{2}}},\,\,n=0,\pm 1,\pm 2,\ldots } | |
Quantum harmonic oscillator | − ℏ 2 2 m d 2 d x 2 + m ω 2 x 2 2 {\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}+{\frac {m\omega ^{2}x^{2}}{2}}\,} | ℏ ω ( n + 1 2 ) , n = 0 , 1 , 2 , … {\displaystyle \hbar \omega \left(n+{\frac {1}{2}}\right),\,\,n=0,1,2,\ldots } | for higher dimensions see here |
Hydrogen atom | − ℏ 2 2 μ ∇ 2 − e 2 4 π ε 0 r {\displaystyle -{\frac {\hbar ^{2}}{2\mu }}\nabla ^{2}-{\frac {e^{2}}{4\pi \varepsilon _{0}r}}} | − ( μ e 4 32 π 2 ϵ 0 2 ℏ 2 ) 1 n 2 , n = 1 , 2 , 3 , … {\displaystyle -\left({\frac {\mu e^{4}}{32\pi ^{2}\epsilon _{0}^{2}\hbar ^{2}}}\right){\frac {1}{n^{2}}},\,\,n=1,2,3,\ldots } |