Special tables were also made of half of the versed sine, because of its particular use in the haversine formula used historically in navigation.
This figure also illustrates the reason why the versine was sometimes called the sagitta, Latin for arrow. If the arc ADB of the double-angle Δ = 2θ is viewed as a "bow" and the chord AB as its "string", then the versine CD is clearly the "arrow shaft".
In further keeping with the interpretation of the sine as "vertical" and the versed sine as "horizontal", sagitta is also an obsolete synonym for the abscissa (the horizontal axis of a graph).
Another historical advantage of the versine is that it is always non-negative, so its logarithm is defined everywhere except for the single angle (θ = 0, 2π, …) where it is zero—thus, one could use logarithmic tables for multiplications in formulas involving versines.
Other high-regarded tables of haversines were those of Richard Farley in 1856 and John Caulfield Hannyngton in 1876.
The haversine continues to be used in navigation and has found new applications in recent decades, as in Bruce D. Stark's method for clearing lunar distances utilizing Gaussian logarithms since 1995 or in a more compact method for sight reduction since 2014.
While the usage of the versine, coversine and haversine as well as their inverse functions can be traced back centuries, the names for the other five cofunctions appear to be of much younger origin.
The functions are circular rotations of each other.
v
e
r
s
i
n
(
θ
)
=
c
o
v
e
r
s
i
n
(
θ
+
π
2
)
=
v
e
r
c
o
s
i
n
(
θ
+
π
)
{\displaystyle {\begin{aligned}\mathrm {versin} (\theta )&=\mathrm {coversin} \left(\theta +{\frac {\pi }{2}}\right)=\mathrm {vercosin} \left(\theta +\pi \right)\end{aligned}}}
Inverse functions like arcversine (arcversin, arcvers, avers, aver), arcvercosine (arcvercosin, arcvercos, avercos, avcs), arccoversine (arccoversin, arccovers, acovers, acvs), arccovercosine (arccovercosin, arccovercos, acovercos, acvc), archaversine (archaversin, archav, haversin−1, invhav, ahav, ahvs, ahv, hav−1), archavercosine (archavercosin, archavercos, ahvc), archacoversine (archacoversin, ahcv) or archacovercosine (archacovercosin, archacovercos, ahcc) exist as well:
Alternatively, if the versine is small and the versine, radius, and half-chord length are known, they may be used to estimate the arc length s (AD in the figure above) by the formula
s
≈
L
+
v
2
r
{\displaystyle s\approx L+{\frac {v^{2}}{r}}}
This formula was known to the Chinese mathematician Shen Kuo, and a more accurate formula also involving the sagitta was developed two centuries later by Guo Shoujing.
A more accurate approximation used in engineering is
v
≈
s
3
2
L
1
2
8
r
{\displaystyle v\approx {\frac {s^{\frac {3}{2}}L^{\frac {1}{2}}}{8r}}}
The Āryabhaṭīya by Āryabhaṭa https://archive.org/stream/The_Aryabhatiya_of_Aryabhata_Clark_1930#page/n1/mode/2up
Inman, James (1835) [1821]. Navigation and Nautical Astronomy: For the Use of British Seamen (3 ed.). London, UK: W. Woodward, C. & J. Rivington. Retrieved 2015-11-09. (Fourth edition: [1].) /wiki/James_Inman
Zucker, Ruth (1983) [June 1964]. "Chapter 4.3.147: Elementary Transcendental Functions - Circular functions". In Abramowitz, Milton; Stegun, Irene Ann (eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 78. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253. 978-0-486-61272-0
Tapson, Frank (2004). "Background Notes on Measures: Angles". 1.4. Cleave Books. Archived from the original on 2007-02-09. Retrieved 2015-11-12. http://www.cleavebooks.co.uk/dictunit/notesa.htm#others
Oldham, Keith B.; Myland, Jan C.; Spanier, Jerome (2009) [1987]. "32.13. The Cosine cos(x) and Sine sin(x) functions - Cognate functions". An Atlas of Functions: with Equator, the Atlas Function Calculator (2 ed.). Springer Science+Business Media, LLC. p. 322. doi:10.1007/978-0-387-48807-3. ISBN 978-0-387-48806-6. LCCN 2008937525. 978-0-387-48806-6
Beebe, Nelson H. F. (2017-08-22). "Chapter 11.1. Sine and cosine properties". The Mathematical-Function Computation Handbook - Programming Using the MathCW Portable Software Library (1 ed.). Salt Lake City, UT, USA: Springer International Publishing AG. p. 301. doi:10.1007/978-3-319-64110-2. ISBN 978-3-319-64109-6. LCCN 2017947446. S2CID 30244721. 978-3-319-64109-6
Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Review Exercises [100] Secondary Trigonometric Functions". Written at Ann Arbor, Michigan, USA. Trigonometry. Vol. Part I: Plane Trigonometry. New York, USA: Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. pp. 125–127. Retrieved 2017-08-12. https://archive.org/stream/planetrigonometr00hallrich#page/125/mode/1up
Boyer, Carl Benjamin (1969) [1959]. "5: Commentary on the Paper of E. J. Dijksterhuis (The Origins of Classical Mechanics from Aristotle to Newton)". In Clagett, Marshall (ed.). Critical Problems in the History of Science (3 ed.). Madison, Milwaukee, and London: University of Wisconsin Press, Ltd. pp. 185–190. ISBN 0-299-01874-1. LCCN 59-5304. 9780299018740. Retrieved 2015-11-16. 0-299-01874-1
Swanson, Todd; Andersen, Janet; Keeley, Robert (1999). "5 (Trigonometric Functions)" (PDF). Precalculus: A Study of Functions and Their Applications. Harcourt Brace & Company. p. 344. Archived (PDF) from the original on 2003-06-17. Retrieved 2015-11-12. http://math.hope.edu/swanson/text/chapter5.pdf
Korn, Grandino Arthur; Korn, Theresa M. (2000) [1961]. "Appendix B: B9. Plane and Spherical Trigonometry: Formulas Expressed in Terms of the Haversine Function". Mathematical handbook for scientists and engineers: Definitions, theorems, and formulars for reference and review (3 ed.). Mineola, New York, USA: Dover Publications, Inc. pp. 892–893. ISBN 978-0-486-41147-7. (See errata.) 978-0-486-41147-7
Calvert, James B. (2007-09-14) [2004-01-10]. "Trigonometry". Archived from the original on 2007-10-02. Retrieved 2015-11-08. http://www.du.edu/~jcalvert/math/trig.htm
Edler von Braunmühl, Anton (1903). Vorlesungen über Geschichte der Trigonometrie - Von der Erfindung der Logarithmen bis auf die Gegenwart [Lectures on history of trigonometry - from the invention of logarithms up to the present] (in German). Vol. 2. Leipzig, Germany: B. G. Teubner. p. 231. Retrieved 2015-12-09. /wiki/Johann_Anton_Edler_von_Braunm%C3%BChl
Cajori, Florian (1952) [March 1929]. A History of Mathematical Notations. Vol. 2 (2 (3rd corrected printing of 1929 issue) ed.). Chicago, USA: Open court publishing company. p. 172. ISBN 978-1-60206-714-1. 1602067147. Retrieved 2015-11-11. The haversine first appears in the tables of logarithmic versines of José de Mendoza y Rios (Madrid, 1801, also 1805, 1809), and later in a treatise on navigation of James Inman (1821). See J. D. White in Nautical Magazine (February and July 1926). {{cite book}}: ISBN / Date incompatibility (help) (NB. ISBN and link for reprint of 2nd edition by Cosimo, Inc., New York, USA, 2013.) 978-1-60206-714-1
Cauchy, Augustin-Louis (1821). "Analyse Algébrique". Cours d'Analyse de l'Ecole royale polytechnique (in French). Vol. 1. L'Imprimerie Royale, Debure frères, Libraires du Roi et de la Bibliothèque du Roi.access-date=2015-11-07--> (reissued by Cambridge University Press, 2009; ISBN 978-1-108-00208-0) /wiki/Augustin-Louis_Cauchy
Bradley, Robert E.; Sandifer, Charles Edward (2010-01-14) [2009]. Buchwald, J. Z. (ed.). Cauchy's Cours d'analyse: An Annotated Translation. Sources and Studies in the History of Mathematics and Physical Sciences. Cauchy, Augustin-Louis. Springer Science+Business Media, LLC. pp. 10, 285. doi:10.1007/978-1-4419-0549-9. ISBN 978-1-4419-0548-2. LCCN 2009932254. 1441905499, 978-1-4419-0549-9. Retrieved 2015-11-09. (See errata.) 978-1-4419-0548-2
van Brummelen, Glen Robert (2013). Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry. Princeton University Press. ISBN 9780691148922. 0691148929. Retrieved 2015-11-10. 9780691148922
Weisstein, Eric Wolfgang. "Vercosine". MathWorld. Wolfram Research, Inc. Archived from the original on 2014-03-24. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein
Some English sources confuse the versed cosine with the coversed sine. Historically (f.e. in Cauchy, 1821), the sinus versus (versine) was defined as siv(θ) = 1−cos(θ), the cosinus versus (what is now also known as coversine) as cosiv(θ) = 1−sin(θ), and the vercosine as vcsθ = 1+cos(θ). However, in their 2009 English translation of Cauchy's work, Bradley and Sandifer associate the cosinus versus (and cosiv) with the versed cosine (what is now also known as vercosine) rather than the coversed sine. Similarly, in their 1968/2000 work, Korn and Korn associate the covers(θ) function with the versed cosine instead of the coversed sine.
Weisstein, Eric Wolfgang. "Coversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2005-11-27. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein
Ludlow, Henry Hunt; Bass, Edgar Wales (1891). Elements of Trigonometry with Logarithmic and Other Tables (3 ed.). Boston, USA: John Wiley & Sons. p. 33. Retrieved 2015-12-08. https://archive.org/details/elementsoftrigon00ludlrich
Wentworth, George Albert (1903) [1887]. Plane Trigonometry (2 ed.). Boston, USA: Ginn and Company. p. 5. https://archive.org/details/planetrigonomet06wentgoog
Kenyon, Alfred Monroe; Ingold, Louis (1913). Trigonometry. New York, USA: The Macmillan Company. pp. 8–9. Retrieved 2015-12-08. https://archive.org/details/trigonometry01ingogoog
Anderegg, Frederick; Roe, Edward Drake (1896). Trigonometry: For Schools and Colleges. Boston, USA: Ginn and Company. p. 10. Retrieved 2015-12-08. https://archive.org/details/trigonometryfor01roegoog
Weisstein, Eric Wolfgang. "Haversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2005-03-10. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein
Fulst, Otto (1972). "17, 18". In Lütjen, Johannes; Stein, Walter; Zwiebler, Gerhard (eds.). Nautische Tafeln (in German) (24 ed.). Bremen, Germany: Arthur Geist Verlag.
Sauer, Frank (2015) [2004]. "Semiversus-Verfahren: Logarithmische Berechnung der Höhe" (in German). Hotheim am Taunus, Germany: Astrosail. Archived from the original on 2013-09-17. Retrieved 2015-11-12. http://www.astrosail.de/de/static/tutorial/semi2.php?cat=41
Rider, Paul Reece; Davis, Alfred (1923). Plane Trigonometry. New York, USA: D. Van Nostrand Company. p. 42. Retrieved 2015-12-08. https://books.google.com/books?id=G4O4AAAAIAAJ
"Haversine". Wolfram Language & System: Documentation Center. 7.0. 2008. Archived from the original on 2014-09-01. Retrieved 2015-11-06. http://reference.wolfram.com/language/ref/Haversine.html
The abbreviation hvs sometimes used for the haversine function in signal processing and filtering is also sometimes used for the unrelated Heaviside step function. /wiki/Heaviside_step_function
Rudzinski, Greg (July 2015). "Ultra compact sight reduction". Ocean Navigator (227). Ix, Hanno. Portland, ME, USA: Navigator Publishing LLC: 42–43. ISSN 0886-0149. Retrieved 2015-11-07. http://issuu.com/navigatorpublishing/docs/on227_download_edition
Boyer, Carl Benjamin; Merzbach, Uta C. (1991-03-06) [1968]. A History of Mathematics (2 ed.). New York, USA: John Wiley & Sons. ISBN 978-0471543978. 0471543977. Retrieved 2019-08-10. 978-0471543978
van Brummelen, Glen Robert (2013). Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry. Princeton University Press. ISBN 9780691148922. 0691148929. Retrieved 2015-11-10. 9780691148922
"sagitta". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.) https://www.oed.com/search/dictionary/?q=sagitta
"sagitta". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.) https://www.oed.com/search/dictionary/?q=sagitta
Cauchy, Augustin-Louis (1821). "Analyse Algébrique". Cours d'Analyse de l'Ecole royale polytechnique (in French). Vol. 1. L'Imprimerie Royale, Debure frères, Libraires du Roi et de la Bibliothèque du Roi.access-date=2015-11-07--> (reissued by Cambridge University Press, 2009; ISBN 978-1-108-00208-0) /wiki/Augustin-Louis_Cauchy
Bradley, Robert E.; Sandifer, Charles Edward (2010-01-14) [2009]. Buchwald, J. Z. (ed.). Cauchy's Cours d'analyse: An Annotated Translation. Sources and Studies in the History of Mathematics and Physical Sciences. Cauchy, Augustin-Louis. Springer Science+Business Media, LLC. pp. 10, 285. doi:10.1007/978-1-4419-0549-9. ISBN 978-1-4419-0548-2. LCCN 2009932254. 1441905499, 978-1-4419-0549-9. Retrieved 2015-11-09. (See errata.) 978-1-4419-0548-2
Some English sources confuse the versed cosine with the coversed sine. Historically (f.e. in Cauchy, 1821), the sinus versus (versine) was defined as siv(θ) = 1−cos(θ), the cosinus versus (what is now also known as coversine) as cosiv(θ) = 1−sin(θ), and the vercosine as vcsθ = 1+cos(θ). However, in their 2009 English translation of Cauchy's work, Bradley and Sandifer associate the cosinus versus (and cosiv) with the versed cosine (what is now also known as vercosine) rather than the coversed sine. Similarly, in their 1968/2000 work, Korn and Korn associate the covers(θ) function with the versed cosine instead of the coversed sine.
Calvert, James B. (2007-09-14) [2004-01-10]. "Trigonometry". Archived from the original on 2007-10-02. Retrieved 2015-11-08. http://www.du.edu/~jcalvert/math/trig.htm
Boyer, Carl Benjamin; Merzbach, Uta C. (1991-03-06) [1968]. A History of Mathematics (2 ed.). New York, USA: John Wiley & Sons. ISBN 978-0471543978. 0471543977. Retrieved 2019-08-10. 978-0471543978
Calvert, James B. (2007-09-14) [2004-01-10]. "Trigonometry". Archived from the original on 2007-10-02. Retrieved 2015-11-08. http://www.du.edu/~jcalvert/math/trig.htm
Cajori, Florian (1952) [March 1929]. A History of Mathematical Notations. Vol. 2 (2 (3rd corrected printing of 1929 issue) ed.). Chicago, USA: Open court publishing company. p. 172. ISBN 978-1-60206-714-1. 1602067147. Retrieved 2015-11-11. The haversine first appears in the tables of logarithmic versines of José de Mendoza y Rios (Madrid, 1801, also 1805, 1809), and later in a treatise on navigation of James Inman (1821). See J. D. White in Nautical Magazine (February and July 1926). {{cite book}}: ISBN / Date incompatibility (help) (NB. ISBN and link for reprint of 2nd edition by Cosimo, Inc., New York, USA, 2013.) 978-1-60206-714-1
de Mendoza y Ríos, Joseph (1795). Memoria sobre algunos métodos nuevos de calcular la longitud por las distancias lunares: y aplicación de su teórica á la solucion de otros problemas de navegacion (in Spanish). Madrid, Spain: Imprenta Real. /wiki/Jos%C3%A9_de_Mendoza_y_R%C3%ADos
Archibald, Raymond Clare (1945). "Recent Mathematical Tables : 197[C, D].—Natural and Logarithmic Haversines..." Mathematical Tables and Other Aids to Computation. 1 (11): 421–422. doi:10.1090/S0025-5718-45-99080-6. /wiki/Raymond_Clare_Archibald
Andrew, James (1805). Astronomical and Nautical Tables with Precepts for finding the Latitude and Longitude of Places. Vol. T. XIII. London. pp. 29–148. (A 7-place haversine table from 0° to 120° in intervals of 10".) /wiki/Haversine
van Brummelen, Glen Robert (2013). Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry. Princeton University Press. ISBN 9780691148922. 0691148929. Retrieved 2015-11-10. 9780691148922
"haversine". Oxford English Dictionary (2nd ed.). Oxford University Press. 1989. /wiki/Oxford_English_Dictionary
Cajori, Florian (1952) [March 1929]. A History of Mathematical Notations. Vol. 2 (2 (3rd corrected printing of 1929 issue) ed.). Chicago, USA: Open court publishing company. p. 172. ISBN 978-1-60206-714-1. 1602067147. Retrieved 2015-11-11. The haversine first appears in the tables of logarithmic versines of José de Mendoza y Rios (Madrid, 1801, also 1805, 1809), and later in a treatise on navigation of James Inman (1821). See J. D. White in Nautical Magazine (February and July 1926). {{cite book}}: ISBN / Date incompatibility (help) (NB. ISBN and link for reprint of 2nd edition by Cosimo, Inc., New York, USA, 2013.) 978-1-60206-714-1
White, J. D. (February 1926). "(unknown title)". Nautical Magazine. (NB. According to Cajori, 1929, this journal has a discussion on the origin of haversines.) /wiki/The_Nautical_Magazine
White, J. D. (July 1926). "(unknown title)". Nautical Magazine. (NB. According to Cajori, 1929, this journal has a discussion on the origin of haversines.) /wiki/The_Nautical_Magazine
Inman, James (1835) [1821]. Navigation and Nautical Astronomy: For the Use of British Seamen (3 ed.). London, UK: W. Woodward, C. & J. Rivington. Retrieved 2015-11-09. (Fourth edition: [1].) /wiki/James_Inman
"haversine". Oxford English Dictionary (2nd ed.). Oxford University Press. 1989. /wiki/Oxford_English_Dictionary
Inman, James (1835) [1821]. Navigation and Nautical Astronomy: For the Use of British Seamen (3 ed.). London, UK: W. Woodward, C. & J. Rivington. Retrieved 2015-11-09. (Fourth edition: [1].) /wiki/James_Inman
Archibald, Raymond Clare (1945). "Recent Mathematical Tables : 197[C, D].—Natural and Logarithmic Haversines..." Mathematical Tables and Other Aids to Computation. 1 (11): 421–422. doi:10.1090/S0025-5718-45-99080-6. /wiki/Raymond_Clare_Archibald
Farley, Richard (1856). Natural Versed Sines from 0 to 125°, and Logarithmic Versed Sines from 0 to 135°. London.{{cite book}}: CS1 maint: location missing publisher (link) (A haversine table from 0° to 125°/135°.) /wiki/Template:Cite_book
Archibald, Raymond Clare (1945). "Recent Mathematical Tables : 197[C, D].—Natural and Logarithmic Haversines..." Mathematical Tables and Other Aids to Computation. 1 (11): 421–422. doi:10.1090/S0025-5718-45-99080-6. /wiki/Raymond_Clare_Archibald
Hannyngton, John Caulfield (1876). Haversines, Natural and Logarithmic, used in Computing Lunar Distances for the Nautical Almanac. London.{{cite book}}: CS1 maint: location missing publisher (link) (A 7-place haversine table from 0° to 180°, log. haversines at intervals of 15", nat. haversines at intervals of 10".) /wiki/Template:Cite_book
Stark, Bruce D. (1997) [1995]. Stark Tables for Clearing the Lunar Distance and Finding Universal Time by Sextant Observation Including a Convenient Way to Sharpen Celestial Navigation Skills While On Land (2 ed.). Starpath Publications. ISBN 978-0914025214. 091402521X. Retrieved 2015-12-02. (NB. Contains a table of Gaussian logarithms lg(1+10−x).) 978-0914025214
Kalivoda, Jan (2003-07-30). "Bruce Stark - Tables for Clearing the Lunar Distance and Finding G.M.T. by Sextant Observation (1995, 1997)" (Review). Prague, Czech Republic. Archived from the original on 2004-01-12. Retrieved 2015-12-02.[2][3] http://www.starpath.com/catalog/books/StarkTables.htm
Rudzinski, Greg (July 2015). "Ultra compact sight reduction". Ocean Navigator (227). Ix, Hanno. Portland, ME, USA: Navigator Publishing LLC: 42–43. ISSN 0886-0149. Retrieved 2015-11-07. http://issuu.com/navigatorpublishing/docs/on227_download_edition
The abbreviation hvs sometimes used for the haversine function in signal processing and filtering is also sometimes used for the unrelated Heaviside step function. /wiki/Heaviside_step_function
Zucker, Ruth (1983) [June 1964]. "Chapter 4.3.147: Elementary Transcendental Functions - Circular functions". In Abramowitz, Milton; Stegun, Irene Ann (eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 78. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253. 978-0-486-61272-0
Zucker, Ruth (1983) [June 1964]. "Chapter 4.3.147: Elementary Transcendental Functions - Circular functions". In Abramowitz, Milton; Stegun, Irene Ann (eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 78. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253. 978-0-486-61272-0
Weisstein, Eric Wolfgang. "Vercosine". MathWorld. Wolfram Research, Inc. Archived from the original on 2014-03-24. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein
Zucker, Ruth (1983) [June 1964]. "Chapter 4.3.147: Elementary Transcendental Functions - Circular functions". In Abramowitz, Milton; Stegun, Irene Ann (eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 78. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253. 978-0-486-61272-0
Weisstein, Eric Wolfgang. "Versine". MathWorld. Wolfram Research, Inc. Archived from the original on 2010-03-31. Retrieved 2015-11-05. /wiki/Eric_Wolfgang_Weisstein
Zucker, Ruth (1983) [June 1964]. "Chapter 4.3.147: Elementary Transcendental Functions - Circular functions". In Abramowitz, Milton; Stegun, Irene Ann (eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 78. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253. 978-0-486-61272-0
Weisstein, Eric Wolfgang. "Versine". MathWorld. Wolfram Research, Inc. Archived from the original on 2010-03-31. Retrieved 2015-11-05. /wiki/Eric_Wolfgang_Weisstein
Weisstein, Eric Wolfgang. "Coversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2005-11-27. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein
Weisstein, Eric Wolfgang. "Coversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2005-11-27. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein
Weisstein, Eric Wolfgang. "Haversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2005-03-10. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein
Weisstein, Eric Wolfgang. "Haversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2005-03-10. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein
Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Review Exercises [100] Secondary Trigonometric Functions". Written at Ann Arbor, Michigan, USA. Trigonometry. Vol. Part I: Plane Trigonometry. New York, USA: Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. pp. 125–127. Retrieved 2017-08-12. https://archive.org/stream/planetrigonometr00hallrich#page/125/mode/1up
Simpson, David G. (2001-11-08). "AUXTRIG" (Fortran 90 source code). Greenbelt, Maryland, USA: NASA Goddard Space Flight Center. Archived from the original on 2008-06-16. Retrieved 2015-10-26. http://www.davidgsimpson.com/software/auxtrig_f90.txt
van den Doel, Kees (2010-01-25). "jass.utils Class Fmath". JASS - Java Audio Synthesis System. 1.25. Archived from the original on 2007-09-02. Retrieved 2015-10-26. http://www.cs.ubc.ca/~kvdoel/jass/doc/jass/utils/Fmath.html#aexsec%28double%29
Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Review Exercises [100] Secondary Trigonometric Functions". Written at Ann Arbor, Michigan, USA. Trigonometry. Vol. Part I: Plane Trigonometry. New York, USA: Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. pp. 125–127. Retrieved 2017-08-12. https://archive.org/stream/planetrigonometr00hallrich#page/125/mode/1up
Simpson, David G. (2001-11-08). "AUXTRIG" (Fortran 90 source code). Greenbelt, Maryland, USA: NASA Goddard Space Flight Center. Archived from the original on 2008-06-16. Retrieved 2015-10-26. http://www.davidgsimpson.com/software/auxtrig_f90.txt
van den Doel, Kees (2010-01-25). "jass.utils Class Fmath". JASS - Java Audio Synthesis System. 1.25. Archived from the original on 2007-09-02. Retrieved 2015-10-26. http://www.cs.ubc.ca/~kvdoel/jass/doc/jass/utils/Fmath.html#aexsec%28double%29
mf344 (2014-07-04). "Lost but lovely: The haversine". Plus magazine. maths.org. Archived from the original on 2014-07-18. Retrieved 2015-11-05.{{cite news}}: CS1 maint: numeric names: authors list (link) http://plus.maths.org/content/lost-lovely-haversine
Skvarc, Jure (1999-03-01). "identify.py: An asteroid_server client which identifies measurements in MPC format". Fitsblink (Python source code). Archived from the original on 2008-11-20. Retrieved 2015-11-28. http://www.fitsblink.net/software/clients/identify.py
Skvarc, Jure (2014-10-27). "astrotrig.py: Astronomical trigonometry related functions" (Python source code). Ljubljana, Slovenia: Telescope Vega, University of Ljubljana. Archived from the original on 2015-11-28. Retrieved 2015-11-28. http://astro.ago.fmf.uni-lj.si/podatki/2014/V2014-10-27/astro/bojan@arix
Ballew, Pat (2007-02-08) [2003]. "Versine". Math Words, page 4. Versine. Archived from the original on 2007-02-08. Retrieved 2015-11-28. https://web.archive.org/web/20070208190009/http://www.pballew.net/arithme4.html#versine
Simpson, David G. (2001-11-08). "AUXTRIG" (Fortran 90 source code). Greenbelt, Maryland, USA: NASA Goddard Space Flight Center. Archived from the original on 2008-06-16. Retrieved 2015-10-26. http://www.davidgsimpson.com/software/auxtrig_f90.txt
van den Doel, Kees (2010-01-25). "jass.utils Class Fmath". JASS - Java Audio Synthesis System. 1.25. Archived from the original on 2007-09-02. Retrieved 2015-10-26. http://www.cs.ubc.ca/~kvdoel/jass/doc/jass/utils/Fmath.html#aexsec%28double%29
Weisstein, Eric Wolfgang. "Inverse Haversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2008-06-08. Retrieved 2015-10-05. /wiki/Eric_Wolfgang_Weisstein
"InverseHaversine". Wolfram Language & System: Documentation Center. 7.0. 2008. Retrieved 2015-11-05. http://reference.wolfram.com/language/ref/InverseHaversine.html
Simpson, David G. (2001-11-08). "AUXTRIG" (Fortran 90 source code). Greenbelt, Maryland, USA: NASA Goddard Space Flight Center. Archived from the original on 2008-06-16. Retrieved 2015-10-26. http://www.davidgsimpson.com/software/auxtrig_f90.txt
van den Doel, Kees (2010-01-25). "jass.utils Class Fmath". JASS - Java Audio Synthesis System. 1.25. Archived from the original on 2007-09-02. Retrieved 2015-10-26. http://www.cs.ubc.ca/~kvdoel/jass/doc/jass/utils/Fmath.html#aexsec%28double%29
Simpson, David G. (2001-11-08). "AUXTRIG" (Fortran 90 source code). Greenbelt, Maryland, USA: NASA Goddard Space Flight Center. Archived from the original on 2008-06-16. Retrieved 2015-10-26. http://www.davidgsimpson.com/software/auxtrig_f90.txt
van den Doel, Kees (2010-01-25). "jass.utils Class Fmath". JASS - Java Audio Synthesis System. 1.25. Archived from the original on 2007-09-02. Retrieved 2015-10-26. http://www.cs.ubc.ca/~kvdoel/jass/doc/jass/utils/Fmath.html#aexsec%28double%29
Simpson, David G. (2001-11-08). "AUXTRIG" (Fortran 90 source code). Greenbelt, Maryland, USA: NASA Goddard Space Flight Center. Archived from the original on 2008-06-16. Retrieved 2015-10-26. http://www.davidgsimpson.com/software/auxtrig_f90.txt
van den Doel, Kees (2010-01-25). "jass.utils Class Fmath". JASS - Java Audio Synthesis System. 1.25. Archived from the original on 2007-09-02. Retrieved 2015-10-26. http://www.cs.ubc.ca/~kvdoel/jass/doc/jass/utils/Fmath.html#aexsec%28double%29
mf344 (2014-07-04). "Lost but lovely: The haversine". Plus magazine. maths.org. Archived from the original on 2014-07-18. Retrieved 2015-11-05.{{cite news}}: CS1 maint: numeric names: authors list (link) http://plus.maths.org/content/lost-lovely-haversine
Skvarc, Jure (1999-03-01). "identify.py: An asteroid_server client which identifies measurements in MPC format". Fitsblink (Python source code). Archived from the original on 2008-11-20. Retrieved 2015-11-28. http://www.fitsblink.net/software/clients/identify.py
Skvarc, Jure (2014-10-27). "astrotrig.py: Astronomical trigonometry related functions" (Python source code). Ljubljana, Slovenia: Telescope Vega, University of Ljubljana. Archived from the original on 2015-11-28. Retrieved 2015-11-28. http://astro.ago.fmf.uni-lj.si/podatki/2014/V2014-10-27/astro/bojan@arix
Weisstein, Eric Wolfgang. "Inverse Haversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2008-06-08. Retrieved 2015-10-05. /wiki/Eric_Wolfgang_Weisstein
"InverseHaversine". Wolfram Language & System: Documentation Center. 7.0. 2008. Retrieved 2015-11-05. http://reference.wolfram.com/language/ref/InverseHaversine.html
Weisstein, Eric Wolfgang. "Versine". MathWorld. Wolfram Research, Inc. Archived from the original on 2010-03-31. Retrieved 2015-11-05. /wiki/Eric_Wolfgang_Weisstein
Weisstein, Eric Wolfgang. "Coversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2005-11-27. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein
Weisstein, Eric Wolfgang. "Haversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2005-03-10. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein
Weisstein, Eric Wolfgang. "Haversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2005-03-10. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein
Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Review Exercises [100] Secondary Trigonometric Functions". Written at Ann Arbor, Michigan, USA. Trigonometry. Vol. Part I: Plane Trigonometry. New York, USA: Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. pp. 125–127. Retrieved 2017-08-12. https://archive.org/stream/planetrigonometr00hallrich#page/125/mode/1up
Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Review Exercises [100] Secondary Trigonometric Functions". Written at Ann Arbor, Michigan, USA. Trigonometry. Vol. Part I: Plane Trigonometry. New York, USA: Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. pp. 125–127. Retrieved 2017-08-12. https://archive.org/stream/planetrigonometr00hallrich#page/125/mode/1up
Woodward, Ernest (December 1978). Geometry - Plane, Solid & Analytic Problem Solver. Problem Solvers Solution Guides. Research & Education Association (REA). p. 359. ISBN 978-0-87891-510-1. 978-0-87891-510-1
Needham, Noel Joseph Terence Montgomery (1959). Science and Civilisation in China: Mathematics and the Sciences of the Heavens and the Earth. Vol. 3. Cambridge University Press. p. 39. ISBN 9780521058018. {{cite book}}: ISBN / Date incompatibility (help) 9780521058018
Boardman, Harry (1930). Table For Use in Computing Arcs, Chords and Versines. Chicago Bridge and Iron Company. p. 32. /wiki/Chicago_Bridge_and_Iron_Company
Nair, P. N. Bhaskaran (1972). "Track measurement systems—concepts and techniques". Rail International. 3 (3). International Railway Congress Association, International Union of Railways: 159–166. ISSN 0020-8442. OCLC 751627806. /w/index.php?title=P._N._Bhaskaran_Nair&action=edit&redlink=1